Полезные схемы для радиолюбителей

         
ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ И РАБОТА С НИМИ

В большинстве устройств, описанных в этой книге, используются интегральные микросхемы. Радиолюбители даже с небольшим опытом конструирования аппаратуры скорее всего уже имели дело с микросхемами. Но и начинающие радиолюбители смогут повторить устройства, описанные в этой книге. Сведения о микросхемах и рекомендации по их применению, изложенные ниже, помогут им в этом.

Интегральной микросхемой называют миниатюрное электронное устройство, выполняющее определенные функции преобразования и обработки сигналов и содержащее большое число активных и пассивных элементов (от нескольких сотен до нескольких десятков тысяч) в сравнительно небольшом корпусе.

Все микросхемы подразделяют на две группы - аналоговые и цифровые. Аналоговые микросхемы предназначены для работы с непрерывными во времени сигналами. К их числу можно отнести усилители радио-, звуковой и промежуточной частот, операционные усилители, стабилизаторы напряжения и др. Для аналоговых микросхем характерно то, что входная и выходная электрические величины могут иметь любые значения в заданном диапазоне. В цифровых же микросхемах входные и выходные сигналы могут иметь один из двух уровней напряжения: высокий или низкий. В первом случае говорят, что мы имеем дело с высоким логическим уровнем, или логической 1, а во втором - с низким логическим уровнем, или логическим 0. Для микросхем транзисторно-транзисторной логики (ТТЛ) серий К133, К155, К555, широко используемых радиолюбителями, в технических условиях указывают напряжение высокого логического уровня не менее 2,4 В, а низкого - не более 0,4 В. Фактически эти напряжения составляют обычно 3,2...3,5 и 0,1...0,2 В.

В своих разработках радиолюбители наряду с микросхемами ТТЛ широко используют микросхемы на полевых транзисторах, из которых наибольшее распространение получили серии микросхем КМОП (комплементарные полевые транзисторы со структурой металл-окисел-полупроводник). К ним относятся, например, микросхемы серий К164, К176, К561, К564. Для: таких микросхем напряжения, соответствующие высокому и низкому логическим


уровням, составляют соответственно 8,6...8,8 и 0,02...0,05 В (при напряжении питания 9 В).

Таким образом, в микросхемах ТТЛ и КМОП высокий и низкий уровни напряжений сильно отличаются друг от друга, что упрощает совместную работу микросхем с транзисторами, тиристорами и другими приборами.

Почему же уровни напряжений называют логическими?

Дело в том, что цифровые микросхемы предназначены для выполнения определенных логических действий над входными сигналами. Например, на выходе цифровой микросхемы должно появиться напряжение высокого уровня в том случае, если напряжение высокого уровня присутствует хотя бы на одном из входов, т.е. данная микросхема выполняет логическую операцию ИЛИ (логическое сложение). Если же логический сигнал на выходе микросхемы должен быть равен произведению логических сигналов на входах микросхемы, то это операция логического умножения. Существует множество других правил обработки сигналов в цифровых микросхемах. Специальная область математики - булева алгебра (по имени английского математика Дж. Буля) - исследует эти законы. Вот почему цифровые микросхемы называют еще и логическими.

В основу работы цифровых микросхем положена двоичная система счисления. В этой системе используются две цифры: 0 и 1. Цифра 0 соответствует отсутствию напряжения на выходе логического устройства, 1 - наличию напряжения. С помощью нулей и единиц двоичной системы можно записать (закодировать) любое десятичное число. Так, для записи одноразрядного десятичного числа требуются четыре двоичных разряда. Сказанное поясняется табл. 1.



В первом столбце таблицы (ее называют таблицей истинности) записаны десятичные числа от 0 до 9, а в последующих четырех столбцах - разряды двоичного числа. Видно, что число в последующей строке получается в результате прибавления 1 к первому разряду двоичного числа. С помощью четырех разрядов можно записать числа от 0000 до 1111, что соответствует диапазону чисел от 0 до 15 в десятичной системе. Таким образом, если двоичное число содержит N разрядов, то с его помощью можно записать максимальное десятичное число, равное 2^(N-1).


По таблице также несложно заметить, как можно перевести число из двоичной системы в десятичную. Для этого достаточно сложить степени числа 2, соответствующие тем разрядам, в которых записаны логические 1. Так, двоичное число 1001 соответствует десятичному числу 9 (2^3 + 2^0).

Двоичную систему счисления используют в большинстве современных цифровых вычислительных машин.

Рассмотрим свойства и работу некоторых простейших логических элементов, широко используемых радиолюбителями в конструируемых устройствах и приборах.

Логический элемент И (рис. 1,а) имеет два входа и один выход. В верхней части прямоугольника стоит знак & (амперсент), который обозначает операцию объединения, перемножения. Это значит, что напряжение высокого уровня на выходе присутствует в том, и только



в том случае, если на обоих входах также напряжения высокого уровня. Это поясняется таблицей истинности, приведенной на рис. 1,б. Логический элемент 2И-НЕ отличается от элемента И только инвертированием выходного сигнала (рис. 2).



Логический элемент ИЛИ (рис. 3,а) имеет два входа и один выход. Если хотя бы на одном из входов есть напряжение высокого уровня, то такое же напряжение будет на выходе (рис. 3,6). Работа элемента 2ИЛИ-НЕ отличается только инвертированием выходного сигнала (рис. 4).

Логический элемент НЕ (рис. 5,а) имеет один вход и один выход. Если на вход подать напряжение высокого уровня, то на выходе установится напряжение низкого уровня, и наоборот, т. е. говорят, что входной сигнал инвертируется элементом (рис. 5,6).

Эти три разновидности логических элементов позволяют реализовывать любую сколь угодно сложную логическую функцию. Однако для облегчения работы конструктора разработано и выпускается множество других логических элементов [3И-НЕ, 2ИЛИ-НЕ, 2-2-3-4И-4ИЛИ-НЕ (рис. 6) и др.], реализованных в отдельных корпусах микросхем.





Одним из наиболее широко применяемых радиолюбителями в своих конструкциях является логический элемент 2И-НЕ (см. рис. 2). Если подавать входной сигнал на соединенные вместе входы, то он будет работать как инвертор (рис. 7,а).


С помощью двух логических элементов 2И-НЕ можно производить операцию логического умножения (рис. 7,6), с помощью трех логических элементов - операцию логического сложения (операцию ИЛИ, рис. 7,в). Таким образом, с помощью элемента 2И-НЕ можно реализовать любую логическую операцию.

Одной из наиболее популярных у радиолюбителей серий микросхем является серия К155. В настоящее время она насчитывает более 100 наименований.

Микросхемы серии К155 питаются от источника постоянного напряжения 5В±5%, потребляя ток (на один корпус) в зависимости от назначения от 10 до 100 мА. Как было отмечено, напряжение высокого уровня фактически составляет около 3,5 В, а низкого -около 0,1 В. Для того чтобы подать на вход логического элемента напряжение низкого уровня, достаточно этот вход соединить с общим проводом питания. Для подачи напряжения высокого уровня достаточно оставить этот вход свободным, однако, чтобы уменьшить влияние помех, желательно этот вход подключить к напряжению +5В через резистор сопротивлением 1...1.5 кОм. К одному резистору можно подключать до 10 входов микросхем. Напряжение на входах логических элементов можно измерять обычным авометром на пределе измерения постоянного напряжения, но лучше использовать специальный пробник.

Простейший пробник состоит из свето-диода и резистора (рис. 8). Если при подключении к выходу логического элемента светодиод светится, то на этом выходе напряжение высокого уровня, если же светодиод не светится, то на входе пробника напряжение низкого уровня.



На рис. 9,а представлена схема логического пробника, который индицирует уровни логического 0 и логической 1 зажиганием одного из двух светодиодов.

При отсутствии входного сигнала на выходе логического элемента DD1.1 действует напряжение низкого уровня, а на выходе логического элемента DD1.2 - высокого уровня. Светодиоды HL1 и HL2 не светятся. При подаче на вход напряжения низкого уровня (0...0.4 В) состояние логического элемента DD1.2 не изменяется, а на выходе DD1.1 появляется напряжение высокого уровня (поскольку на входы DD1.1 через открытый диод VD1 подано напряжение низкого уровня).


Загорается светодиод HL1, индицируя уровень логического 0. Если же на вход подано напряжение высокого уровня, то через открывшийся диод VD2 это напряжение подается на входы логического элемента DD1.2; на выходе DD1.2 появляется напряжение низкого уровня и загорается светодиод HL2, показывая уровень логической 1. Состояние же элемента DD1.1 при этом не изменяется, светодиод HL1 не горит.

На рис. 9;б представлена схема другого логического пробника, аналогичного по принципу работы предыдущему. Отличие состоит в том, что информация о логических уровнях напряжения выводится на светодиодный семисегментный цифровой индикатор. Для управления сегментами в пробник добавлены логические элементы DD1.3, DD1.4 и диоды VD3, VD4. Сегменты, имеющие выводы 10, 13, индицируют логическую 1, а все шесть сегментов - логический 0. Сегмент, имеющий вывод б, - знак запятой (индикация включения пробника). Логические элементы DD1.3 и DD1.4 включены параллельно для получения суммарного выходного тока, обеспечивающего нормальную работу одновременно шести сегментов.

Для предотвращения подачи на пробники напряжения обратной полярности в их плюсовые шины включены диоды (VD3 на рис. 9, а и VD5 на рис. 9,6),

Микросхему К155ЛАЗ можно заменить на К133ЛАЗ, К158ЛАЗ, К155ЛА1, К155ЛА4, К555ЛАЗ. Вместо К155ЛА8 можно применить К133ЛА8, К155ЛАЗ, но в последнем случае номинал резисторов R3-R8 необходимо увеличить до 820 Ом. Светодиодный индикатор АЛС324Б можно заменить на АЛ 133, АЛС312 с любым буквенным индексом, а также на АЛ305А, АЛС321Б, АЛС337Б, АЛС338Б, АЛС324Б. Диоды могут быть любыми из серий Д7, Д9, Д311.

Пробник со светодиодным индикатором собран в корпусе от вышедшей из строя электрозажигалки или другом.

Такие пробники пригодны для работы с микросхемами, рассчитанными на питание от источника напряжением +5 В (серии К155, КР531, К555, К 133, К 134). Для работ с микросхемами КМОП (серии



К 164, К176, К561) пробник может быть собран по аналогичной схеме на микросхемах КМОП, но для управления сегментами цифрового индикатора придется применить транзисторные ключи.



Теперь несколько слов о более сложных микросхемах, с которыми читатель встретится в книге.

Во многих рассматриваемых конструкциях используют триггеры (электронное устройство с двумя устойчивыми состояниями, причем переход из одного состояния в другое происходит под действием внешнего сигнала). При отсутствии сигнала триггер может находиться в одном из двух состояний неограниченно долго (т. е. обладает "памятью"). Поэтому триггеры широко используют в электронно-вычислительных машинах для хранения информации. В зависимости от выполняемых функций и назначения триггеры классифицируют по типам. Мы рассмотрим только два из них: RS- и D-триггеры.

Условное обозначение RS-триггеры представлено на рис. 10,а. Он имеет по два входа и выхода. Выходы обозначены буквами Q (прямой) и Qинв (инверсный). Логические уровни на этих двух выходах противоположны. Это сделано для удобства соединения триггеров с другими логическими элементами устройств. Некоторые типы триггеров инверсного выхода не имеют. Вход S предназначен для установки триггера в единичное состояние (напряжение высокого уровня на выходе Q); вход R - для установки в нулевое состояние (напряжение низкого уровня на выходе Q). Поскольку среди микросхем серии К 155 RS-триггер отсутствует, его собирают из двух логических элементов 2И-НЕ, входящих в состав микросхемы К155ЛАЗ (рис. 10,6). Установка триггера в нужное состояние осуществляется подачей напряжения низкого уровня на один из входов (на другом входе в это время должно быть напряжение высокого уровня). Подача на оба входа напряжения низкого уровня недопустима.

На рис. 10,в представлено условное обозначение D-триггера (нумерация выводов приведена для микросхемы К155ТМ2, содержа-



щей два таких триггера). По сравнению с RS-триггером здесь имеются два новых вывода: D и С. Вход D называют информационным, а С - входом синхронизации. После подачи импульса на вход С на прямом выходе Q триггера установится тот логический уровень, который был до прихода синхроимпульса на входе D.


Входы R и S выполняют те же функции, что и в рассмотренном выше RS-триггере.

Рассмотренный D-триггер несложно преобразовать в счетный триггер, т. е. такой, состояние которого изменяется после поступления очередного импульса на счетный вход. Для обеспечения счетного режима необходимо вход D соединить с инверсным выходом триггера (рис. 11,а). Из логики работы D-триггера следует, что после прихода импульса на вход С состояние триггера будет изменяться на противоположное. Это иллюстрируется временными диаграммами, или эпюрами напряжений (рис. 11,6). Подобно таблице истинности, эпюры напряжений дают наглядное представление о работе устройства, к ним мы будем обращаться и в дальнейшем. Необходимо отметить, что изменение состояния D-триггера данного типа происходит при изменении напряжения на счетном входе с низкого уровня на высокий. Такое изменение напряжения часто называют положительным перепадом напряжения или фронтом импульса. Реакцию триггера на положительный перепад напряжения отображают косой чертой, пересекающей линию входа С (см. рис. 11,а). Аналогично изменение напряжения с высокого уровня на низкий называют отрицательным перепадом напряжения, спадом или срезом импульса. На схемах это отображают также косой чертой, но повернутой на 90° относительно показанной на рисунке. В зависимости от своей внутренней структуры триггер реагирует или на положительный, или на отрицательный перепад напряжения.

Несколько триггеров, объединенных в одной микросхеме и соединенных между собой, образуют счетчик. На рис. 12 показана





микросхема К155ИЕ5, содержащая в своем составе четыре счетных триггера. Входом первого триггера является вывод 14, а выходом -вывод 12. Три остальных триггера соединены последовательно, входом первого триггера является вывод 1, а выходами этих триггеров - выводы 9, 8, 11. Для обеспечения последовательной работы всех четырех триггеров следует соединить выводы 1 и 12. Триггеры переключаются спадом импульса (в отличие от микросхемы К155ТМ2). Установку всех триггеров в нулевое состояние осуществляют кратковременной подачей напряжения высокого уровня на оба входа &RO.


Частота импульсов на выходах 1, 2, 4, 8 соответственно в 2, 4, 8, 16 раз меньше частоты входного сигнала. Таким образом, период работы счетчика равен 16 входным импульсам.

Микросхема К155ИЕ2 (рис. 13) также содержит четыре счетных триггера, однако благодаря использованию внутренних обратных связей коэффициент пересчета равен 10. С помощью входов &RO микросхему устанавливают в состояние, при котором на всех выходах напряжение низкого уровня; с помощью входов &R9 микросхему устанавливают в состояние, соответствующее числу 9 в двоичном коде (напряжение высокого уровня на выходах 1 и 8). Триггеры счетчика переключаются срезом импульса.

Чтобы преобразовать двоичный код, в котором представлены выходные сигналы микросхемы К155ИЕ5, в так называемый позиционный код, используются дешифраторы. На рис. 14 представлен интегральный дешифратор К155ИДЗ, осуществляющий такое преобразование. Входы W0 и W1 являются разрешающими. При наличии на них напряжения низкого уровня на одном из выходов дешифратора 0-15 также имеется напряжение низкого уровня, причем номер этого выхода является эквивалентом двоичного числа, поданного на входы 1, 2, 4, 8. Так, при подаче кодовой комбинации входных сигналов 0110 в активном состоянии будет выход 6



(вывод 7) При этом на всех остальных выходах будет напряжение высокого уровня. Если же на входы W0, W1 подать напряжение высокого уровня, то такое же напряжение будет на всех выходах дешифратора Поэтому входы W0, W1 называют разрешающими или стробирующими.

Существуют микросхемы, содержащие в одном корпусе счетчик и дешифратор Примером является микросхема КМОП К176ИЕ8 (рис 15) Вход R служит для установки триггеров в исходное состояние, при котором на выходах 1-9 имеется напряжение низкого уровня, а на выходе 0 - напряжение высокого уровня Входные импульсы можно подавать на один из входов СР или CN. При подаче же импульсов на вход СР изменение состояния счетчика происходит по фронту импульсов (при этом на входе CN должно быть напряжение низкого уровня) При подаче же импульсов на вход CN изменение состояния происходит по срезам импульсов (при этом на втором входе СР должно быть напряжение высокого уровня) На активном выходе, номер которого соответствует числу импульсов, поступивших после установки в исходное состояние, имеется напряжение высокого уровня (в отличие от напряжения низкого уровня в К155ИДЗ)



Особенности работы счетчиков, дешифраторов и микросхем другого функционального назначения будут рассмотрены в каждом конкретном случае отдельно.

Из многих важных параметров микросхем обратим внимание на три из них - входной и выходной токи логического элемента и его максимальное выходное напряжение Входной ток - это ток, который протекает через входную цепь при соединении входа логического элемента с общим проводом или с проводом питания. В первом



случае ток называют вытекающим, и для большинства микросхем серии К155 он составляет 1,6 мА. Во втором случае говорят о втекающем токе, который составляет примерно 40 мкА. Из сказанного следует, что если между входом логического элемента и общим проводом включен резистор, то для обеспечения на входе напряжения низкого уровня (которое для серии К 155 не должно превышать 0,4 В) его сопротивление не может быть больше 0,4В.О,0016А, т. е. 250 Ом Увеличение сопротивления этого резистора сверх указанного значения приведет к установлению на входе потенциала, соответствующего порогу переключения элемента Такое состояние является неустойчивым. Поэтому увеличивать сопротивление этого резистора не рекомендуется. Для подачи на вход напряжения высокого уровня достаточно оставить этот вход свободным, однако с целью повышения помехоустойчивости целесообразно соединить его с проводом питания через резистор сопротивлением 1...2 кОм. Необходимо заметить, что величина входного вытекающего тока накладывает ограничение и на сопротивление времязадающих резисторов генераторов, выполненных на элементах этой микросхемы, которое не должно превышать 1 кОм. Для микросхем серии К555 входной вытекающий ток в 3-4 раза меньше, поэтому сопротивления резисторов могут быть в 3-4 раза больше. Для микросхем КМОП (К176, К561) входной вытекающий ток составляет примерно 0,2 мкА, исходя из этого следует рассчитывать и сопротивления резисторов.

Выходной ток логического элемента также может быть втекающим и вытекающим. Первый имеет место в случае подключения нагрузки между выходом и шиной питания, причем на выходе имеется напряжение низкого уровня.


Значение этого тока для большинства элементов ТТЛ, у которых выходной каскад имеет внутреннюю нагрузку, составляет 16 мА. Для элементов с открытым коллектором значение этого тока значительно выше - так, для элементов микросхемы К155ЛЛ2 допускается выходной ток 300 мА. Вытекающий ток логического элемента - это ток в цепи нагрузки, включенной между выходом и общим проводом, причем на выходе имеется напряжение высокого уровня Значение этого тока для большинства микросхем ТТЛ составляет 0,2 0,4 мА Для увеличения выходного тока можно соединять параллельно несколько однотипных логических элементов, при этом объединяют входы и выходы элементов (см схему логического пробника, рис 9,6)

Максимальное выходное напряжение - это напряжение, которое может быть приложено к выходу логического элемента без повреждения последнего. Для большинства логических элементов ТТЛ оно не превышает напряжения питания, но для некоторых элементов с открытым коллекторным выходом оно значительно больше 12 В

для К155ЛА11, 15 В для К155ЛН5, 30 В для К155ЛА18, К155ЛИ5, К155ЛЛ2, К155ЛНЗ, К155ЛП9.

Высокое допустимое выходное напряжение в сочетании с большим выходным током позволяет непосредственно подключать к выходам микросхем электромагнитные реле, элементы индикации.

Несколько советов по монтажу интегральных микросхем.

1. Во время пайки нельзя перегревать корпус микросхемы. Для этого следует использовать припой с температурой плавления не более 260°С, мощность паяльника не должна превышать 40 Вт. длительность пайки одного вывода - не более 5 с, а промежуток времени между пайками выводов одной микросхемы должен быть не менее полминуты. Если ведется монтаж нескольких микросхем, то сначала паяют первый вывод первой микросхемы, затем первый вывод второй и т. д., затем второй вывод первой микросхемы, второй вывод второй и т. д. Благодаря такому приему микросхемы успевают остывать в промежуток между пайками.

Микросхемы КМОП могут быть выведены из строя разрядом статического электричества, основным источником которого является человек.


Чтобы этого не случилось, жало паяльника и руки радиомонтажника необходимо заземлять.

2. Монтаж микросхемы может быть выполнен печатным способом, проводами или комбинированным способом.

При пайке проводами удобно использовать многожильный провод в тугоплавкой изоляции типа МГТФ 0,07...0,12 мм^2 или одножильный луженый провод 0,25...0,35 мм^2 также в тугоплавкой изоляции. Сначала на вывод микросхемы наматывают 1-1,5 витка провода, а затем производят пайку. Этот способ хорош тем, что позволяет неоднократно производить перепайки проводов, а такая необходимость может возникнуть в процессе наладки устройства.

Печатный монтаж микросхем следует применять тогда, когда есть уверенность, что схема работоспособна, а также при изготовлении нескольких одинаковых устройств на одинаковых платах. Печатные платы могут иметь одно- и двустороннее расположение печатных проводников. Для большинства устройств в книге приведены рисунки печатных плат.

При комбинированном способе монтажа микросхемы припаивают к контактным площадкам, а в другие отверстия контактных площадок впаивают проволочные проводники. На рис. 16 показаны чертежи двух печатных плат для комбинированного монтажа микросхем (платы № 1 и 2, в дальнейшем мы будем на них ссылаться). На платах можно установить микросхемы с 14, 16 и 24 выводами.

Утолщенными линиями обозначены шины для подачи питания ва микросхемы. На платах имеются также отверстия для установки



вилки соединителя МРН-22 с целью подключения элементов платы к внешним устройствам. Каждый вывод микросхемы, как видно из рисунка, впаивают в отверстие контактной площадки. В два других отверстия впаивают выводы радиоэлементов или проводники, соединяющие между собой микросхемы.

Целесообразно изготовить три-четыре таких печатных платы и вести на них монтаж различных конструкций.

3. Неиспользуемые выводы микросхем ТТЛ следует объединять в группы по 10 шт. и подключать к плюсовой шине питания через резистор 1...1,5 кОм; неиспользуемые выводы микросхем КМОП можно непосредственно подключать к плюсовой шине.

4. Для улучшения помехозащищенности между шинами питания следует устанавливать конденсаторы типов КМ-6, К10-7, К10-17 емкостью 0,1...0,047 мкф из расчета один конденсатор на два-три корпуса микросхем. Особое внимание следует уделять обеспечению помехоустойчивости устройств, имеющих в своем составе микросхемы памяти - триггеры, счетчики и т. п.

5. Соединительные провода должны иметь длину не более 20... 30 см. Если же требуется передать сигнал на большее расстояние, используют так называемые витые пары. Два провода скручивают вместе, по одному из них подается сигнал, а второй заземляют (соединяют с общим проводом) с обоих концов. Целесообразно также оба конца сигнального провода подключить к плюсовой шине через резисторы 1 кОм (для ТТЛ-микросхем) или 100 кОм (для КМОП-микросхем). Длина проводов витой пары может достигать 1,5...2м.


О МЕРАХ БЕЗОПАСНОСТИ ПРИ ИЗГОТОВЛЕНИИ И НАЛАДКЕ УСТРОЙСТВ


Радиолюбителям, занимающимся конструированием различных электронных устройств, постоянно приходится иметь дело с электрическим током. Неосторожное обращение с током в процессе изготовления, наладки и эксплуатации устройств может привести к печальным последствиям, поэтому необходимо тщательно выполнять несложные правила техники безопасности.

Безопасным для человека считается напряжение, не превышающее 36 В. Разумеется, речь идет о нормальных условиях - сухое помещение, чистая и сухая кожа. Поскольку при питании устройств от гальванических элементов и батарей значения напряжений ниже, следует соблюдать безопасность при работе с устройствами, имеющими сетевое питание.

Значение тока, протекающего через тело человека, зависит от его сопротивления. У всех людей это сопротивление различно. Сопротивление снижается, если руки человека влажные, а также если влажная его одежда. Это необходимо учитывать, прежде чем приступить к работе. Не следует также иметь дело с электрическим током в болезненном или утомленном состоянии - реакция человека снижается и вероятность несчастного случая увеличивается.

При попадании человека под напряжение электрический ток обычно протекает от одной руки к другой, а также от руки к ноге. Поэтому не следует одновременно двумя руками прикасаться к элементам устройства, а также держаться рукой за трубу отопления или водопровода; под ноги на рабочем месте желательно подкладывать резиновый коврик, являющийся изолятором.

Жало паяльника следует заземлять - это обеспечит безопасность работы при нарушении изоляции паяльника и появлении на корпусе фазного напряжения (в этом случае сработают предохранители и сеть будет обесточена). Предохранители электросети (плавкие вставки или электромеханические "пробки") должны быть исправными.

Замену элементов налаживаемой конструкции следует производить только в обесточенном состоянии. Если в устройстве имеются высоковольтные конденсаторы, их необходимо разрядить (вообще при проектировании устройства надо предусматривать разрядку таких конденсаторов после отключения напряжения питания).
Если необходимо измерить напряжение на элементах, то один щуп вольтметра следует подключить к требуемой точке при обесточен

ном устройстве (например, с помощью лабораторного зажима типа "крокодил"); после включения устройства в сеть вторым щупом прикасаются к выводу элемента. При этом не следует пользоваться щупом, имеющим неизолированную часть (спицу) значительной длины - в этом случае можно надеть отрезок изоляционной трубки, оставив неизолированный конец длиной 2 ..3 мм. Измерение лучше выполнять одной рукой.

Некоторые радиолюбители проверяют наличие напряжения на зажимах с помощью языка. Так делать ни в коем случае нельзя, даже если известно, что напряжение не превышает 5.. 7 В. Говорят, что незаряженное ружье один раз в год стреляет; также и на этих зажимах может оказаться значительное напряжение.

В последнее время радиолюбители собирают приборы на транзисторах и микросхемах, питание которых осуществляется безопасным напряжением. Как правило, такие устройства питаются от сети через понижающий трансформатор. В этом случае опасное напряжение имеется на выводах первичной обмотки трансформатора, выключателя питания и патроне предохранителя (применение их обязательно). Монтаж этой части прибора, связанной с сетью, следует выполнять особенно тщательно, все соединения нужно изолировать поливинилхлоридной трубкой, лакотканью пли изоляционной лентой.

Если устройство не содержит трансформатор, то все элементы имеют гальваническую связь с сетью. При настройке и эксплуатации такого устройства следует соблюдать особую осторожность. В процессе налаживания устройства желательно питать его через разделительный трансформатор, у которого первичная и вторичная обмотки рассчитаны на напряжение сети Плату и элементы устройства необходимо тщательно изолировать от корпуса, а сам корпус лучше выполнять из непроводящего материала. Изнутри корпус желательно выложить асбестовыми пластинами. Ручки переменных резисторов, колпачки переключателей, другие элементы управления следует выполнять из изоляционного материала.

Прежде чем включать прибор в сеть, подключите омметр к выводам сетевой вилки и убедитесь в отсутствии короткого замыкания.

При работе начинающего радиолюбителя с электронными устройствами желательно, чтобы в этом помещении находился второй человек, который в случае необходимости может отключить напряжение и оказать помощь.

Таковы основные правила техники безопасности при работе с электроустановками, которых необходимо придерживаться каждому радиолюбителю.


Генератор случайных чисел


По принципу действия это устройство аналогично описанному выше, но оно выдает случайные числа в виде цифр, высвечиваемых цифровым индикатором. Принципиальная схема генератора случайных чисел приведена на рис. 22. Устройство выполнено на двух микросхемах серии К176.

Названная серия отличается от уже знакомой нам серии К155 тем, что выполнена на полевых транзисторах. Поэтому микросхемы этой серии потребляют очень малую мощность. Так, для используемых в описываемом ниже генераторе случайных чисел микросхем К176ЛА7 и К176ИЕ8 ток потребления (в статическом режиме) не превышает 0,1 и 100 мкА соответственно. Кроме того, логические элементы, входящие в состав микросхем, имеют высокое входное сопротивле


ние (несколько мегаом), что также является их достоинством (в этом вы убедитесь ниже).

На микросхеме DD1 собран генератор, а на микросхеме DD2 -счетчик с дешифратором. Микросхема Е176ЕА8 представляет собой десятичный счетчик, совмещенный с дешифратором. Напомним, как работает микросхема. Вход R служит для установки исходного состояния (для этого на него необходимо кратковременно подать напряжение высокого уровня), а вход СР - для подачи счетных импульсов положительной полярности (в данном случае на него в процессе работы подается напряжение высокого логического уровня). Микросхема имеет также вход CN для подачи импульсов отрицательной полярности. В процессе счета на выходах микросхемы последовательно появляется напряжения высокого уровня, которое через резисторы R3-R12 подается на базы высоковольтных транзисторов VT1-VT10. Последние управляют цифровым газоразрядным индикатором HG1. Поскольку за время удержания кнопки SB1 счетчик многократно переполнялся, высвечиваемое индикатором число будет практически случайным.

Контакты кнопки SB1 отключают питание индикатора на время нажатия кнопки, чтобы исключить мерцание цифр.

Питание генератора чисел осуществляется от простейшего однополупериодного выпрямителя с параметрическим стабилизатором и


фильтром VD1VD2C2 Резистор R2 необходим для подачи напряжения высокого уровня на вывод 12 микросхемы DD1

Генератор случайных чисел собран на печатной плате из фольгированного стеклотекстолита (рис 23). В налаживании устройство не нуждается.

При работе с генератором случайных чисел необходимо соблюдать меры безопасности, поскольку все элементы устройства имеют гальваническую связь с сетью

Прибор можно использовать для иллюстрации некоторых вопросов теории вероятностей и математической статистики, при проведении различного рода экспериментов, а также в ряде игр.



Игровое устройство "Рулетка"


В популярной телевизионной игре "Что? Где? Когда?" для определения очередного тура конкурса используют механический волчок, или рулетку. Раскручивают волчок до большой скорости и дают ему возможность свободно вращаться. Положение стрелки волчка после остановки укажет на адрес очередного вопроса или на музыкальную паузу.

Такое устройство можно сделать и электронным. На рис. 20 приведена его принципиальная схема. Схема генератора несколько отличается от использовавшейся в электронном кубике. Во-первых, транзистор VT1 повышает входное сопротивление логического элемента DD1.1, что позволяет применить конденсатор С1 сравнительно небольшой емкости. Во-вторых, частота генератора зависит от напряжения на базе транзистора VT2: чем больше это напряжение, тем больше и частота.

Нарастающее или убывающее напряжение формируется узлом, собранным на резисторах R3-R7, конденсаторе С2 и кнопке SB1. В исходном состоянии контактов кнопки, показанном на схеме, напряжение на конденсаторе С2 составляет примерно 1 В. При этом транзистор VT2 закрыт, его внутреннее сопротивление велико и .генератор не работает. Счетчик DD2 находится в произвольном состоянии, и светится один из светодиодов HL1-HL16. При нажатии кнопки SB1 "Пуск" конденсатор С2 начинает заряжаться. Ток базы транзистора VT2 плавно увеличивается, внутреннее сопротивление транзистора уменьшается, и начинает работать генератор, причем частота его импульсов постепенно увеличивается. Светодиоды HL1-HL16 расположены по окружности, поэтому создается впечатление кругового движения горящей точки (светится только один светодиод).

Когда конденсатор С2 зарядится до максимального напряжения, определяемого сопротивлением резисторов делителя, частота импульсов генератора станет максимальной. Теперь кнопку SB1 можно


отпустить. Начнется разрядка конденсатора С2, и частота генератора будет плавно уменьшаться. Через некоторое время внутреннее сопротивление транзистора VT2 увеличится настолько, что генератор остановится и будет гореть один из светодиодов HL1-HL16.
Какой именно светодиод - заранее узнать невозможно. Именно эта особенность и позволяет использовать устройство в различных играх. Например, около каждого светодиода можно написать числа от 1 до 16 и соревноваться, кто больше очков наберет, скажем, за пять ходов (играют поочередно несколько участников). Если же каждому числу будет соответствовать какое-либо задание, которое должен выполнить участник, то с помощью рулетки можно проводить интересные конкурсы, викторины.

Устройство собрано в круглом корпусе диаметром 300 мм. На верхней крышке находятся 16 светодиодов, равномерно размещенных по окружности, и кнопка SB1 "Пуск" (в центре окружности). Выключатель питания Q1 и держатель предохранителя FU1 расположены на нижней крышке корпуса в углублении.

В устройстве можно применить следующие радиодетали. Транзисторы VT1, VT2 любые из серий КТ312. КТ315, КТ342, КТ3117. VT3 -типов КТ801, КТ807, КТ815 с любыми буквами. Светодиоды HL1-HL16 могут быть типов АЛ102; АЛ307; АЛ310 с любыми буквами Вместо них можно применять также миниатюрные лампы накаливания НСМ6,3-20, но при этом вместо резистора R10 следует поставить перемычку и включить резисторы сопротивлением 510. .680 Ом между выходами дешифратора DD3 и общим проводом (это уменьшит бросок тока при включении ламп накаливания, поскольку нити ламп все время будут разогреты небольшим током, протекающим через резисторы). Конденсаторы С1-С4 - типов К50-6, К50-16, К50-3. Резисторы - типа МЛТ-0,25. Кнопка SB1 - типа КМ1-1, П2К, выключатель питания - тумблер (МТ1, П1Т-1-1, Tl, T2 и др.). Трансформатор Tl - любой, имеющий вторичную обмотку на напряжение 8...12 В и ток не менее 200 мА (подойдут, например, без переделки трансформаторы типов ТВК-70Л2, ТВК-110ЛМ, ТВК-110Л2) Транзистор VT3 установлен на небольшом уголке площадью 15... 20 см - он служит радиатором.

При налаживании, прежде всего отключив от стабилизатора цепи питания микросхем, с помощью резистора R8 устанавливают на эмиттере VT3 напряжение 5 В. Затем восстанавливают цепи питания микросхем.


Нажимают на кнопку SB1 "Пуск" и подбором резистора R6 устанавливают требуемую скорость "разгона" (т. е. скорость нарастания частоты генератора). Затем кнопку SB1 отпускают, резистор R7 закорачивают, резистор R5 временно заменяют переменным такого же номинала и, уменьшая его сопротивление, добиваются срыва колебаний генератора. После этого снимают перемычку с резистора R7, нажатием кнопки SB1 "Пуск" вновь "разгоняют" генератор, кнопку отпускают и подбором резистора R7 устанавливают требуемую скорость остановки. На этом налаживание можно считать законченным.



При использовании устройства в большом зале размеры его могут оказаться недостаточными. В этом случае целесообразно изготовить выносное табло размером 1. .1,5 м с лампами на напряжение сети и мощностью 40 ..60 Вт Для коммутации ламп применяют бесконтактные ключи на тринисторах (рис. 21). При подаче напряжения низкого уровня на вход ключа транзистор VT1 закрыт, а транзистор VT2 и тринистор VS1 открыты, лампа HL1 светится

При использовании выносного табло светодиоды HL1-HL16 можно не отключать от выходов дешифратора.


Электронный кубик


Всем знакомы игры, в которых перед началом хода требуется бросать небольшой пластмассовый кубик, на шести гранях которого нанесено от одной до шести точек (очков). Бросая по очереди кубик, играющие суммируют очки: кто больше набрал, тот и выиграл.

Можно изготовить электронное устройство, заменяющее такой кубик. На передней панели устройства должны быть шесть светодиодов, кнопка и тумблер включения. Стоит нажать кнопку - и количество светящихся светодиодов покажет число набранных в очередном туре очков.

Принципиальная схема электронного кубика представлена на рис. 17,а. На трех логических элементах 2И-НЕ микросхемы DD1 собран генератор, а на шести D-триггерах (микросхемы DD2-DD4) -кольцевой счетчик.

Как работает генератор? Он представляет собой трехкаскадный усилитель, охваченный положительной обратной связью через конденсатор С1 и отрицательной - через резистор R1. При наличии таких связей в усилителе возникают автоколебания, частота которых определяется произведением R1C1. При этом контакты кнопки SB1 должны быть разомкнуты. Запомните эту схему - в дальнейшем она будет использоваться во многих устройствах.

Рассмотрим работу счетчика. Как видно из схемы, все синхронизирующие входы D-триггеров соединены между собой, а вход D последующего триггера соединен с прямым выходом предыдущего D-триггера. Вход же D первого триггера (DD2.1) соединен с инверсным выходом последнего триггера (DD4.2). Работу цепи триггеров (ее еще называют кольцевым триггерным счетчиком) удобно проанализировать по таблице истинности (табл. 2). Выходы Q1-Q6 - это прямые выходы триггеров. Допустим, в исходный момент все триггеры находятся в нулевом состоянии. Тогда на входе D первого триггера - напряжение высокого уровня, поступающее с инверсного выхода шестого триггера. После поступления первого импульса триггер DD2.1 переключается в единичное состояние, и с его прямого выхода напряжение высокого уровня поступает на вход D триггера DD2.2. .Поэтому после поступление импульса № 2 второй триггер переключается в единичное состояние По мере поступления на входы С шести, импульсов все триггеры




переключаются в единичное состояние. При этом светятся все светодиоды, подключенные к инверсным выходам триггеров. На вход D первого триггера теперь подано напряжение низкого уровня, и при подаче последующих шести импульсов триггеры последовательно переключаются в нулевое состояние. Из табл. 2 видно, что период работы кольцевого счетчика равен 12 тактам.

При нажатии кнопки SB1 "Пуск" импульсы частотой 1...2 МГц с генератора поступают на вход кольцевого счетчика. Последний за время удержания кнопки (1...2 с) многократно переполняется, поэтому после отпускания кнопки состояния триггеров DD2.1 -DD4.2, отображаемые горящими светодиодами HL1-HL6, практически случайны. Сколько светодиодов зажглось, столько очков и записывают в актив игроку.



Питаются микросхемы от батареи GB1, потребляя ток 50...100 мА.

Все элементы устройства, кроме SB1, Q1 и GB1, расположены на печатной плате (рис. 17, б,в). Выключатель питания Q1 (он может быть типов П2Т, МТ1, П2К) и кнопка SB1 (она может быть типов КМ1, МП1 или любого другого типа) расположены на верхней крышке. Здесь же просверлены отверстия для светодиодов HL1-HL6. Плата с деталями крепится с помощью винтов с ограничивающими втулками. Батарея GB1 может быть типа 3336 "Рубин"; светодиоды HL1-HL6 - типов АЛ102, АЛ307 АЛ310 с любыми буквенными индексами; конденсатор С1 - типов КЛС, КМ-5, К10-7в, К10-23;

резисторы - типа МЛТ-0,25.

Электронный кубик в налаживании не нуждается.

Начинающие радиолюбители могут "увидеть", как переключаются триггеры при поступлении импульсов генератора. Для этого параллельно конденсатору С1 необходимо подключить оксидный конденсатор емкостью 200...500 мкФ на напряжение 6...10 В отрицательной обкладкой к выводам 1, 2 логического элемента DD1.1. При этом частота генератора уменьшится до 0,5...2 Гц, и по зажиганию соответствующих светодиодов можно проследить последовательность переключения триггеров. Разумеется, кнопка SB1 должна быть постоянно нажата.


Электронный светофор


Беседы по правилам дорожного движения, проводимые учителями в начальных классах, могут стать более эффективными, если они будут сопровождаться демонстрацией модели автоматически действующего светофора.

Схема электронного светофора, выполненного на интегральных микросхемах, приведена на рис. 34 Принцип его работы иллюстрируют временные диаграммы, представленные здесь же.

Логические элементы DD1.1-DD1.3 образуют генератор импульсов с частотой около 1 Гц. Транзистор VT1 повышает входное сопротивление элемента DD1.1, что позволяет использовать в генераторе конденсатор С1 сравнительно небольшой емкости при большом сопротивлении резистора R1. Импульсы с выхода генератора поступают на входы элементов DD1.4 и DD2 1, работой которых управляет RS-триггер на элементах DD2.2 и DD2.3. Если на выводе 6 элемента DD2.2 напряжение высокого уровня, то импульсы поступают на вывод 4 микросхемы DD3, если же напряжение высокого уровня на выводе 8 элемента DD2.3, то импульсы подаются на вывод 5 микросхемы DD3

Эта микросхема (К155ИЕ7) - параллельный реверсивный четырехразрядный двоичный счетчик, работающий в коде 1-2-4-8. Вход R0 служит для установки счетчика в нулевое состояние, вход С - для предварительной записи в счетчик информации, поданной на входы (на схеме они не показаны). В данном случае на вход С постоянно подается напряжение высокого уровня, а на вход R0 - низкого уровня. При подаче счетных импульсов на вход +1 происходит увеличение числа, записанного в счетчик (прямой счет); если же импульсы поступают на вход -1, то число в счетчике уменьшается (обратный счет).

Сигналы с четырех выходов счетчика поступают на входы дешифратора DD4 (К155ИДЗ). В любой момент на одном из выходов этого дешифратора имеется напряжение низкого уровня, причем номер этого выхода соответствует десятичному эквиваленту двоичного числа, поданного на вход дешифратора.

Рассмотрим работу светофора при прямом счете импульсов. Когда на выходе элемента DD2.3 напряжение высокого уровня, на выходе элемента DD2.2 - напряжение низкого уровня.
Импульсы с генератора через DD1.4 поступают на вход + 1 микросхемы DD3. При этом происходит увеличение числа, записанного в счетчик, и напряжение низкого уровня появляется последовательно на выходах микросхемы DD4 Пока напряжение низкого уровня присутствует на выводах 1, 2, . ., 7 микросхемы DD4, на выходе микросхемы DD5 -





напряжение высокого уровня. В это время на выходе логического элемента DD8 1 имеется напряжение высокого уровня, срабатывает реле К1 и своими контактами К1 1 замыкает цепь питания лампы красного цвета (на схеме не показана) Лампы желтого и зеленого сигналов при этом не горят, так как на выходах элементов DD7.1 и DD8.4 - напряжение низкого уровня. При появлении напряжения низкого уровня на выводах 8, 9, 10 микросхемы DD4 на выводе элемента DD7.1 появится напряжение высокого уровня, сработает реле К2 и зажжется лампа желтого сигнала Продолжает гореть и красный сигнал, так как на выходе элемента DD8.2 - напряжение низкого уровня, а на выходе элемента DD8.1 - по-прежнему напряжение высокого уровня (заметим при обратном счете импульсов при напряжении низкого уровня на выводах 8,9,10 микросхемы DD4 на выходе элемента DD8.2 будет напряжение высокого уровня, поскольку RS-триггер DD2 2DD2 3 будет находиться уже в другом состоянии). При дальнейшем счете импульсов напряжение низкого уровня последовательно появляется на выводах 11, 13,...,17 микросхемы DD4. В это время реле К1 и К2 отпустят, а реле КЗ сработает, потому что на выходе микросхемы DD6 появится напряжение высокого уровня и на выходах элементов DD7.3 и DD8.4 - также напряжение высокого уровня. Горит лампа зеленого сигнала светофора. Когда напряжение низкого уровня появится на выводе 17 микросхемы DD4, RS-триггер переключится в противоположное состояние (см. импульс 16 временной диаграммы) Теперь импульсы будут поступать на вход -1 микросхемы DD3 и счет будет происходить в обратном направлении. Лампа зеленого сигнала

продолжает гореть. Когда напряжение низкого уровня появляется последовательно на выводах 14, 13 и 11 микросхемы DD4, зеленый сигнал "мигает".


Это достигается подачей напряжения высокого уровня на выводы 9 и 10 элемента DD7.3 и импульсов с генератора на вывод 11 этого же элемента. При появлении напряжения низкого уровня на выводах 10, 9, 8 микросхемы DD4 сработает реле К2, а реле КЗ отпустит. При дальнейшем счете импульсов загорится лампа красного сигнала. При появлении напряжения низкого уровня на выводе 1 микросхемы DD4 RS-триггер переключается, начинается прямой счет импульсов, и весь цикл работы автомата повторяется.

Частоту генератора, а следовательно, и время горения сигнальных ламп светофора можно изменять подбором резистора R1. Вместо микросхем серии К155 можно использовать аналоги из серий К133, КР531, К555. Все резисторы - МЛТ-0,25. Конденсатор С1 - оксидный К50-6, К50-16, К50-35; С2 - К10-7, КМ-6, К10-17. Транзисторы КТ315Б (VT1-VT4) можно заменить на КТ312, КТ315, КТ503 с любыми буквами. Реле К1-КЗ - типа РЭС-22 (паспорт РФ4.500.129). Нормально разомкнутые контакты этих реле включают последовательно в цепи питания ламп светофора: К1.1 - с красной, К1.2 - с желтой, КЗ.1 - с зеленой. Использованы лампы напряжением 220 В и мощностью 25...60 Вт.

Для уменьшения обгорания контактов реле параллельно им следует включить искрогасящие цепи из последовательно соединенных резистора мощностью не менее 0,5 Вт и сопротивлением 100...200 Ом и конденсатора емкостью 0,1...0,5 мкФ на номинальное напряжение не менее 400 В. Для повышения помехоустойчивости работы микросхем лампы желательно питать постоянным напряжением. Еще лучше применить бесконтактную коммутацию ламп с помощью тиристоров, как это сделано в переключателе елочных гирлянд, описанном ниже. Тогда релеК1-КЗ не понадобятся.

Источник питания должен быть рассчитан на ток не менее 300 мА.

Монтаж устройства выполнен на унифицированной печатной плате 2 (см. рис. 16,б): выводы элементов припаивают к контактным площадкам платы, а соединения делают одножильным изолированным проводом.

Правильно собранное устройство начинает работать сразу после включения и дополнительного налаживания не требует.

Подумайте, как можно превратить этот светофор в "мигалку"? Такие светофоры устанавливают на перекрестках с небольшим движением транспорта.


"Кто быстрее?"


У кого реакция лучше? Это можно определить с помощью автомата, схема которого изображена на рис. 26. Играют четверо. Каждый держит в руках небольшой пульт с кнопкой. У ведущего находится в руках выносной пульт управления, с которого подается


сигнал старта. А пока такого сигнала нет, на лицевой панели периодически вспыхивают две лампы. Но вот ведущий незаметно от играющих нажал кнопку на пульте управления. Сразу же вспыхивает лампа сигнала старта. Теперь все зависит от реакции играющих: кто быстрее нажмет "свою" кнопку, тот и выиграет этот старт.

Рассмотрим работу игрового автомата. При нажатии на кнопку SB2 "Старт" загорается лампа HL3. Увидев ее сигнал, все игроки нажимают кнопки своих пультов (SB3-SB6). Предположим, что первой оказалась нажатой кнопка SB5. Тогда положительное напряжение выпрямителя VD2-VD5 через замыкающие контакты кнопки SB2, диод VD1, резистор R1, диод VD10 и контакты кнопки SB5 поступит на управляющий электрод тринистора VS3, он откроется и загорится лампа HL6, определяющая лидера. Одновременно откроется диод VD8, что приведет к уменьшению на нижнем по схеме выводе резистора R1 напряжения до 0.5...1 В. Поэтому при нажатии кнопок остальными игроками соответствующие тринисторы не смогут открыться. В том же случае, если кто-либо из игроков нажмет свою кнопку до подачи полезного сигнала, одновременно с открыванием соответствующего тринистора и загоранием лампы этого игрока сработает реле К1 и своими

контактами К 1.1 включит звонок НА1 - сигнал нарушения правил игры. Диод VD1 предотвратит в этом случае загорание лампы HL3. Кнопкой SB1 "Сброс" ведущий устанавливает устройство в исходное состояние.

Лампы HL1 и HL2, мигая, выполняют функцию отвлекающих сигналов; они переключаются простейшим генератором, собранным на реле К2, КЗ и конденсаторе С1.

Тринисторы, используемые в этом игровом автомате, могут быть серии КУ101 с любыми буквами. Диоды VD6-VD9 - любые из серий Д9 (кроме Д9Б), Д311 (эти диоды имеют малое прямое падение напряжения, что требуется для надежного шунтирования управляющих переходов тринисторов); VD10 - любой из серий КД509, КД510, КД521, КД522.
Реле К1 - РЭС-10 (паспорт РС4.524.317), К2, КЗ -РЭС-9 (паспорт РС4.524.202). Трансформатор Т1 - мощностью 5... 10 Вт, понижающий напряжение сети до 16... 18 В при токе нагрузки не менее 300 мА. Подойдут, например, трансформаторы типов ТВК-110Л-1, ТВК-110Л-2. Кнопки SB1, SB3 - SB6 - КМ1-1, SB2 -тумблер МТ1-1, ТВ2-1; можно также использовать переключатели П2К. В качестве разъемов использованы магнитофонные разъемы типа СГ-5.

Устройство, собранное без ошибок, в налаживании не нуждается. Игровой автомат "Кто быстрее?" можно выполнить также и на интегральных микросхемах.

Работает такой прибор аналогично описанному выше варианту на тринисторах. Его принципиальная схема приведена на рис. 27.

На логических элементах микросхем DD2, DD4 выполнены RS-григгеры. После подачи питания необходимо нажать кнопку SB6 "Сброс", расположенную на пульте ведущего. При этом все RS-триггеры установятся в нулевое состояние (на их верхних по схеме выходах - напряжение низкого уровня). На выходах логических элементов микросхем DD1 и DD3 - напряжение высокого уровня, поскольку через нормально замкнутые контакты кнопок SB1-SB4 на один из входов каждого из этих логических элементов подано напряжение низкого уровня. Лампы HL1-HL4 не светятся. Работает генератор отвлекающих сигналов, собранный на логических элементах DD6.1, DD6.2 и транзисторе VT5. (Этот транзистор повышает входное сопротивление логического элемента DD6.1, что позволяет использовать резистор R10 сопротивлением в несколько десятков килоом и конденсатор С1 относительно небольшой емкости. Аналогичный генератор встречается и в других конструкциях данной книги). "Перемигиваются" лампы HL5 и HL7 отвлекающего сигнала с частотой около 2 Гц.



После перевода ведущим контактов переключателя SB5 "Старт" в противоположное указанному на схеме положение лампы отвлекающего сигнала отключаются и загорается лампа HL6 полезного сигнала "Старт". Игроки нажимают свои кнопки SB1-SB4. Допустим, обладатель кнопки SB1 среагировал первым.


При этом на выходе логического элемента DD 1.1 появится напряжение низкого уровня, и триггер DD2.1DD2.2 переключится в противоположное состояние, которому соответствует напряжение высокого уровня на выходе элемента DD2.1. На другом выходе триггера (выход элемента DD2.2) при этом будет напряжение низкого уровня, которое поступит на входы логических элементов DD1.2, DD3.1 и DD3.2 (выводы 13,2 и 12 соответственно), поэтому остальные RS-триггеры уже не смогут изменить своего состояния. Одновременно откроется транзистор VT1 и загорится лампа HL1, фиксирующая лидера.

А если первый игрок среагировал преждевременно, т.е. нажал кнопку SB1 до включения лампы "Старт"? В этом случае устройство будет работать так же, как и ранее, однако одновременно с загоранием лампы HL1 в этом случае зазвучит сигнал фальстарта. Этот звуковой сигнал формируется генератором на логических элементах DD6.3 и DD6.4, а работа генератора будет разрешена подачей напряжения высокого уровня, поданного с выхода DD5.1 на вход DD6.3. В случае своевременного старта генератор не заработает, поскольку на выводе 9 логического элемента DD6.3 будет напряжение низкого уровня, поданное через замыкающие контакты переключателя SB5.

В устройстве можно применить микросхемы серий К133, К134, К158, КР531, К555. Транзисторы КТ3117А можно заменить КТ603, КТ608, КТ801, КТ815 с любыми буквами, КТ315Б - любым из серий КТ201, КТ315, КТ503. Конденсатор С1 - оксидный К50-6, К50-16, К50-35; С2 - КМ-6, К10-17, К73-17. Кнопки, переключатели и разъемы - тех же типов, что и в предыдущем варианте игрового автомата.

Для питания устройства потребуется источник, обеспечивающий постоянное напряжение 5 В при токе не менее 300 мА. Он может быть собран, например, по схеме блока питания логического прибора "Версия", описание которого будет приведено ниже.

В игровой автомат "Кто быстрее?" при желании можно внести некоторые усовершенствования. Например, вместо ламп накаливания, определяющих лидера, можно применить цифровые индикаторы (газоразрядные, светодиодные или люминесцентные).При этом каждому игроку будет соответствовать свой цифровой индикатор, и высвечиваемая им цифра позволит определить, каким по счету он среагировал на полезный сигнал. Можно также ввести и электронный

секундомер - это позволит определять не только относительную, но и абсолютную реакцию игрока.


"Кто выше?"


Когда собираются гости, перед хозяином встает задача - чем их занять? Ниже описано несложное устройство, которое позволяет

хорошо размяться и в какой-то степени оценить свои физические способности.

Устройство даёт возможность определить лучшего прыгуна. За отметку высоты принимают, например, ветки деревьев. Подпрыгнул, коснулся ветки - значит, преодолел нужную высоту. С помощью предлагаемого прибора можно более объективно оценивать лидера и устраивать такие состязания не только там, где есть деревья, но и в любом другом месте.

Датчиком высоты служит плата из фольгированного стеклотекстолита, на которой расположены восемь изолированных друг от друга медных площадок (рис. 18).

Плату располагают на определенной высоте. Прикосновение пальцев руки к площадкам вызывает срабатывание соответствующих реле, которые фиксируют достигнутую высоту.

Принципиальная схема прибора показана на рис. 19. Он состоит из восьми одинаковых блоков А1-А8. Каждый блок представляет собой емкостное реле, т. е. устройство, срабатывающее при прикосновении человека к сенсорному контакту (на схеме контакты обозначены Е1-Е8). Каждый блок выполнен на двух транзисторах и тринисторе и представляет собой усилитель. Поскольку тело человека обладает определенной емкостью, оно имеет некоторый электрический заряд, а следовательно, и разность потенциалов между любыми двумя точками тела. Поэтому при прикосновении руки к сенсорному контакту, допустим, блока А1, на базе транзистора VT1 относительно общего провода появляется напряжение. Транзисторы VT1, VT2 открываются и через управляющий электрод тринистора VS1 начинает протекать ток. Это вызывает открывание тринистора и срабатывание электромагнитного реле К1. Своими контактами К 1.1 реле включает лампу HL1 и снимает питание с блоков А2-А8. Если теперь дотронуться до контактов Е2-Е8, то соответствующие реле не сработают. Таким образом, лампа HL1 зафиксирует наибольшую высоту.



А если подпрыгнуть и провести пальцами снизу вверх по сенсорам? Тогда первым сработает реле К8, зажжется лампа HL8 Затем сработает реле К7, зажжется лампа HL7, а реле Е8 отпустит и лампа HL8 погаснет Затем сработает реле Кб, обесточив все предыдущие реле, и т.
д. Таким образом, и в этом случае будет гореть только одна лампа, соответствующая наибольшей достигнутой высоте.

Чтобы возвратить устройство в исходное состояние, необходимо кратковременно нажать кнопку SB1 "Сброс"

Устройство питается от стабилизированного выпрямителя (стабилитрон VD1 и транзистор VT17)

Транзисторы КТ203Б можно заменить на КТ361, КТ502, КТ3107 с любыми буквами; КТ801Б - на КТ815, КТ807 с любыми буквами. Тринисторы - любые из серии КУ101 Мостовой выпрямитель VD2 -типов КЦ402, КЦ405 с любыми буквами или четыре диода Д226, Д310. Реле К1-К8 - типа РЭС-15 (паспорт РС4.591 004) или РЭС-10 (паспорт РС4 524.302). Трансформатор Т1 - типа ТВК-70, ТВК-110Л-1 или любой другой, имеющий вторичную обмотку на напряжение 12...15 В и ток не менее 200 мА

Устройство собрано в корпусе размерами 255 х 200 х 80 мм. Передняя стенка корпуса представляет собой плату с сенсорными контактами (см. рис. 18) Излишки фольги удалены с помощью ножа, В верхней части передней стенки установлены выключатель питания

Q1 и кнопка SB1 "Сброс", а слева - лампы HL1-HL8 В этом же корпусе находится и печатная плата, на которой смонтированы элементы устройства. Сенсорные контакты должны соединяться с печатной платой возможно более короткими проводами (10.. 20 см).

Устройство, собранное из исправных деталей и без ошибок, в налаживании не нуждается При пользовании прибором необходимо лишь подбирать такую полярность подключения первичной обмотки трансформатора Т1 к сети, при которой обеспечивается надежное срабатывание реле.


Логический прибор "Версия"


На верхней панели такого прибора-автомата (рис. 28; расположение на рисунке элементов управления относится ко второму варианту прибора) находятся шесть кнопок и несколько табло. Нажимая эти кнопки в определенной последовательности, требуется зажечь световое табло "Конец". Добиться этого можно последовательным нажатием только трех определенных кнопок, а нажатие любой из трех других кнопок возвращает устройство в исходное состояние, т.е. сводит на нет все предыдущие ходы. Время, которое дается на ходы, ограничено.

Принципиальная схема прибора приведена на рис. 29. При подключении источника питания загорается лампа HL1, подсвечивающая табло "Начинайте игру". После этого игрок начинает нажимать кнопки SB1-SB6 в той последовательности, которую он считает правильной Допустим, первой нажата кнопка SB1. При этом сработает реле К1 и своими контактами К1 2 самоблокируется Начинается зарядка конденсатора С1, работающего в реле выдержки времени, а контакты К 1.1 подготавливают к срабатыванию цепь реле К2 и отключают табло "Начинайте игру" Если следующей будет нажата кнопка SB2, то сработает реле К2, а после нажатия кнопки SB3 - реле КЗ, которое контактами КЗ 2 зажжет лампу HL2 табло "Конец" - игра окончена. Но реле КЗ сработает только в том случае, если три кнопки будут нажаты именно в указанной последовательности: SB1-SB2-SB3. Если же будет нажата одна из кнопок SB4-SB6,



то все сработавшие ранее реле (К1-КЗ) отпустят. А если игрок не успеет угадать необходимую последовательность нажатия кнопок в течение заданного времени? В таком случае сработает реле К4 выдержки времени, и зажжется лампа HL3 табло "Время истекло". Таким образом, игрок, предлагая свою версия последовательности нажатия кнопок, должен включить табло "Конец".

По окончании каждого цикла игры устройство возвращают в исходное состояние нажатием кнопки SB7 "Сброс". Выигрывает тот из игроков, кто угадает нужную последовательность нажатия кнопок за наименьшее число попыток.


Как работает реле выдержки времени? После срабатывания реле К1 его контакты К 1.2 размыкаются, и начинается зарядка конденсатора С1 через резисторы R1 и R2. При определенном напряжении на положительной обкладке конденсатора откроется стабилитрон VD1, а также откроется составной транзистор VT1VT2 и сработает реле К4 - зажжется лампа HL3 табло "Время истекло". Резистор R3 ограничивает ток разрядки конденсатора.

О деталях устройства. Транзисторы VT1 и VT2 могут быть любыми из серий КТ312, КТ315, КТ503. Конденсатор С1 - оксидный К50-6, К50-16, К50-35. Реле К1-К4 - РЭС-9, паспорт РС4.524.200. Кнопки SB1-SB7 - КМ 1-1, П2К и др Источник питания прибора должен обеспечивать постоянное напряжение 18...20 В при токе не менее 300 мА.

Кнопки SB1-SB6 на лицевой панели прибора располагают в произвольном порядке.

Налаживание устройства состоит в установке подстроенным резистором R1 выдержки времени, равной 5...10 с.

Несколько рекомендаций по расширению возможностей игрового автомата. Во-первых, можно предусмотреть изменение требуемой последовательности нажатия кнопок, использовав для этого галетный переключатель. Во-вторых, игру можно сделать в расчете на двух игроков, которые будут делать ходы поочередно - игра станет интереснее.

Схема второго варианта игрового автомата "Версия", выполненного на тринисторах и интегральных микросхемах, показана на рис. 30. Логика его работы несколько отличается от предыдущего


варианта. На передней панели прибора (см. рис. 28) расположены шесть кнопок, каждой из которых присвоен порядковый номер. По сигналу автомата "Ход" требуется за 5. .7 с последовательно нажать три кнопки, после чего цикл можно повторить. Задача состоит в том, чтобы зажечь последовательно три лампы HL1-HL3, расположенные на передней панели прибора, и таким образом угадать искомое число. Каждую последующую цифру числа можно определять только после того, как отгадана предыдущая. Если, допустим, искомое число 132, а игрок нажмет одну за другой кнопки 2, 3, 1, то ни одна из ламп не загорится, хотя вторая цифра определена верно.


В соответствии с этим выстраивают и версии поиска: сначала нужно найти первую цифру числа, затем, начиная последующие ходы с нажатия уже известной первой кнопки, определить вторую цифру, а затем - и третью.

Как работает это игровое устройство? После подключения его к сети выключателем Q1 следует нажать кнопку SB7 "Сброс". При этом кратковременно сработает реле К1 и своими контактами К 1.2 установит в исходное состояние RS-триггер на логических элементах DD1.3 и DD1.4, а также счетчик DD2. В отличие от RS-триггера, который устанавливается в нулевое состояние подачей напряжения низкого уровня на его вход, счетчик К155ИЕ2 устанавливается в нулевое состояние подачей напряжения высокого уровня на его входы &R0. В счетном режиме на этих входах должно быть напряжение низкого уровня. Счетные импульсы должны подаваться на вход С1, при этом на выходах 1, 2, 4, 8 появляются сигналы, соответствующие в двоичном коде числу импульсов, поданных на вход счетчика.

Итак, устройство в исходном состоянии, светится лампа HL5 "Ход". Можно нажимать кнопки. Допустим, игрок первой нажал кнопку SB1. При этом откроется тринистор VS1 и загорится лампа HL1. Если затем нажать кнопку SB2, то откроется тринистор VS2, на управляющий электрод которого будет подано напряжение с лампы HL1 через резистор R2 и замыкающие контакты кнопки SB2. Очевидно, что если лампа HL1 не светится, то тринистор VS2 не откроется.

Каждое нажатие одной из кнопок SB1-SB6 приводит к формированию на выходе RS-триггера DD1.1DD1.2 (вывод 3) импульса, и состояние счетчика DD2 будет увеличиваться на единицу. После поступления на счетчик четырех импульсов на выходе 4 микросхемы DD2 появится напряжение высокого уровня, откроется тринистор VS4 и загорится лампа HL4 "Нарушено". Таким образом, по правилам игры за один цикл поиска можно нажимать не более трех кнопок.





В устройстве предусмотрено и ограничение времени совершения ходов. После первого же нажатия одной из кнопок переключится в противоположное состояние RS-триггер DD1.3DD1.4 - на выводе 8 появится напряжение высокого уровня и через резистор R8 начнется зарядка конденсатора С1.


Как только напряжение на нем достигнет 2...3 В, откроется составной транзистор VT1VT2 и сработает реле К1. Устройство возвратится в исходное состояние.

Диод VD1 обеспечивает быструю разрядку конденсатора С1 после возвращения устройства в исходное состояние.

Микросхемы устройства питаются от стабилизатора, выполненного на транзисторе VT4, который включен эмиттерным повторителем. Лампы и реле К1 питаются выпрямленным нестабилизированным напряжением, снимаемым с конденсатора С3.

В игровом автомате можно использовать микросхемы серий К133, К155, КР531, К555. Тринисторы - любые из серии КУ101. Транзисторы КТ315Б и КТ608Б можно заменить любыми из серий КТ608, КТ815, а также на КТ603А, КТ3117А. В качестве VT4 можно применить транзисторы типов КТ807, КТ815, КТ817 с любыми буквами. Диодную сборку КЦ405А можно заменить на КЦ402, КЦ405 с любыми буквами, а также на КЦ407А. Реле К1 - типа РЭС-9, паспорт РС4.524.201. Кнопки SB1-SB7 - типов КМ2-1, П2К, выключатель питания Q1 - тумблер любого типа (ТВ2-1, ТП1-2, МТ1 и др.). Трансформатор Т1 - ТВК-110Л-1 (использована обмотка II). Самодельный трансформатор может быть выполнен на магнитопроводе ШЛ 16х25. Обмотка I содержит 2400 витков провода ПЭВ-1 0,14, обмотка II - 250 витков провода ПЭВ-1 0,27.

Большая часть элементов устройства размещена на печатной плате (рис. 31). Транзистор VT4 установлен на небольшом радиаторе (площадью 20...30 см^2). Если монтаж выполнен без ошибок и все детали исправны, то в налаживании устройство не нуждается.

Это устройство - не только игра. Его можно использовать и для тренировки логичности мышления, способности быстро принимать решения. Для этого прибор можно усовершенствовать, например, ввести счетчик суммарного затраченного времени, счетчик числа ходов. Подумайте, как это сделать.


Рефлексометр


Как известно, реакцией человека называют время, которое проходит от момента воздействия на наши органы чувств какого-либо раздражителя до момента принятия конкретных действий. Например, шофер увидел на дороге яму и нажал на тормоза. Промежуток времени "увидел - нажал" и будет составлять в этом

случае время реакции. Несомненно, есть люди с хорошей и плохой реакцией от рождения. Но реакцию можно тренировать. Хорошо подходит для этого прибор "Кто быстрее?", описание которого было приведено выше. Рефлексометр, о котором речь пойдет ниже, также предназначен для тренировки реакции и внимания.

Сущность работы рефлексометра состоит в следующем. На табло в случайной последовательности зажигаются цифры от 0 до 9. В течение времени горения цифры испытуемый должен успеть нажать кнопку с номером, соответствующим появившейся цифре. Если нажата нужная кнопка и в срок, в актив испытуемому засчитывается одно очко, в противном случае очко не засчитывается. Чем больше очков будет набрано, тем лучшими перечисленными выше способностями обладает человек.

Рассмотрим работу устройства по его принципиальной схеме, представленной на рис. 32. На микросхемах DD3-DD8 выполнены три декадных счетчика. На работе счетчика остановимся подробнее. Микросхема К155ИЕ2 представляет собой двоично-десятичный четырехразрядный счетчик. Для обеспечения счетного режима работы выход первого триггера (вывод 12) соединен с входом второго триггера (вывод 1). Входные импульсы подают па вход С1 (вывод 14). Установка всех четырех триггеров счетчика в нулевое состояние обеспечивается подачей напряжения высокого уровня на входы &R0. В режиме счета импульсов на эти входы должно быть подано напряжение низкого уровня. При поступлении импульсов на вход С1 происходит последовательное переключение триггеров микросхемы таким образом, что число, записанное в триггерах и выведенное в двоичной форме на выходы 1-2-4-8, соответствует числу поступивших на счетчик импульсов после его сброса. Выходы счетчика соединены с соответствующими входами дешифратора (микросхема К155ИД1), который преобразует двоично-десятичный код в десятичный и управляет работой газоразрядного индикатора ИН-14.


Индикатор HG1 первого счетчика "выдает" случайные числа, второй счетчик фиксирует набранные очки, а третий считает общее число циклов. На логических элементах DD1.4 и DD2.1 собран генератор, вырабатывающий импульсы с частотой следования в несколько десятков килогерц, а на логических элементах DD1.1-DD1.3 - генератор инфранизкой (доли герца) частоты. Допустим, что второй генератор находится в состоянии, при котором на выходе элемента DD1.3 напряжение высокого уровня (на все элементы устройства подано питание, и микросхемы установлены в исходное состояние нажатием кнопки SB 11 "Сброс", а затем нажата кнопка SB12 "Пуск"). В этом случае на счетный вход С1 микросхемы DD3



будут поступать импульсы высокой частоты. Через некоторое время конденсатор С1 перезарядится, и на выходе DD1.3 появится напряжение низкого уровня, генератор DD1.4DD2.1 затормозится. Но счетчик DD3 многократно переполнялся импульсами генератора, поэтому после его остановки цифровой индикатор HG1 будет высвечивать практически случайное число. Допустим, это число "2". Тогда испытуемый должен нажать кнопку с таким же номером (SB2). Напряжение низкого уровня с вывода 8 дешифратора DD4 через диод VD4 и замыкающие контакты кнопки SB2, через резистор R10 поступит на базу транзистора VT3. Транзисторы VT2 и VT3 откроются. На вход RS-триггера DD2.2DD2.3 (вывод 4 микросхемы DD2) поступит напряжение низкого уровня и переключит его в противоположное предыдущему состояние. При этом с выхода триггера (вывод 8 микросхемы DD2) на вход второго счетчика поступит импульс, который запишет в счетчик одно очко. Если же испытуемый нажмет любую другую кнопку, кроме SB2, состояние RS-триггера и второго счетчика не изменится. После этого цикл работы рефлексометра повторится.

Импульсы с выхода элемента DD1.3 поступают на вход третьего счетчика, который фиксирует общее число циклов. После прихода на счетчик девятого импульса RS-триггер DD9.1DD9.2 сигналами с выходов 1 и 8 (выводы 12 и 11 микросхемы DD7) переключится в противоположное состояние, загорится лампа HL1, сигнализирующая об окончании одного цикла эксперимента.


Индикатор HG2 высветит число набранных очков, которое в лучшем случае может быть равно 9. Для начала новой серии циклов необходимо нажать кнопку SB12 "Пуск".

Переменным резистором R3 можно изменять продолжительность свечения цифры, выдаваемой генератором случайных чисел (индикатор HG1), и тем самым упрощать или усложнять задачу испытуемого. Диоды VD1 и VD2 позволяют раздельно устанавливать длительность действия напряжений высокого и низкого уровней на выходе генератора. Транзистор VT4 отключает цифровой индикатор HG1 в моменты работы генератора случайных чисел и тем самым исключает мерцание цифр индикатора. Резисторы R6, R12, R14, конденсаторы СЗ, С4 обеспечивают необходимую помехоустойчивость микросхем рефлексометра.

Транзисторы VT1, VT2 могут быть любыми из серий КТ312, КТ315, КТ503; VT3 - любой из серий КТ203, КТ361, КТ502; VT4 -любой из серий П308, П309, КТ601, КТ604, КТ605, КТ940; VT5 -КТ603, КТ608, КТ3117, КТ815, КТ817 с любыми буквами. Диоды VD1, VD2 - любые из серий Д9, Д311, КД509, КД521, КД522;

VD3-VD12 - Д104А, Д105А, Д223А, Д223Б, КД521 (А-В), КД509А,



КД226 с любыми буквами (эти диоды должны быть рассчитаны на обратное напряжение не менее 70 В и малое прямое (0,5...1 В) напряжение). Конденсатор С1 - оксидный К50-6, К50-16, К50-35;

С2-С4 - типов КМ-6, К10-7, К10-17, КЛС. Переменный резистор R3 - СП-1, СПЗ-4ам, остальные резисторы - МЛТ-0,25. Кнопки SB I-SB 12 желательно применить с герконовыми контактами (у них малое усилие нажатия), однако при их отсутствии возможно использование кнопок и других типов. Цифровые газоразрядные индикаторы HG1-HG3 - типов ИН-1, ИН-4, ИН-8, ИН-12, ИН-14, ИН-18. Лампа HL1 - КМ6-60 или НСМ6,3-20.

Источник питания 5 В должен быть рассчитан на ток не менее 300 мА. Переменное напряжение для питания анодов цифровых индикаторов желательно подавать не непосредственно от сети, а снимать с одной из вторичных обмоток питающего трансформатора - это повысит и помехоустойчивость, и электробезопасность при работе с прибором.

Монтаж элементов рефлексометра выполнен на унифицированной печатной плате N 2 (см. рис. 16,6), соединения сделаны одножильным изолированным проводом. На передней панели прибора (рис. 33) расположены индикаторные лампы HG1-HG3 с соответствующими надписями около них, а также лампа HL4, кнопки SB I-SB 12 и ручка переменного резистора R3.

Если рефлексометр собран из исправных деталей и без ошибок, он начинает работать сразу. Следует лишь резисторами R10, R15, R16 установить необходимую яркость свечения цифровых индикаторов.


Тремометр


Название прибора происходит от латинского слова tremor, т. е. дрожание. Тремор - это непроизвольные колебательные движения всего тела или отдельных его частей. Чаще всего они охватывают пальцы рук, веки, язык, нижнюю челюсть, голову. У здоровых людей тремор может возникать вследствие мышечного напряжения, эмоционального возбуждения, действия холода.

Предлагаемый прибор позволяет количественно оценивать тремор пальцев рук и тренировать пальцы. Для этого испытуемый должен специальным щупом совершать движение вдоль прорезей определенной формы (рис 24). не касаясь их краев.

Рассмотрим работу тремометра, руководствуясь его принципиальной схемой (рис 25) После подачи питания необходимо дотрону-



ться щупом Q1 до контакта Б. При этом срабатывает реле К1 и контактами К 1.1 самоблокируется, загорается лампа HL2, подсвечивающая табло "Работа". Одновременно через резисторы R3 и R4 начнется зарядка конденсатора С1 - пойдет отсчет времени, отведенного на один цикл. Теперь можно начать выполнение требуемого задания. Вначале щуп поочередно помещают в отверстия, затем проводят слева направо вдоль сужающейся щели, далее -вдоль прямоугольного выреза, и т.д. При этом надо стараться не коснуться краев.

Пластина с прорезями выполнена из металла (на схеме обозначена буквой А), поэтому при касании ее щупом Q1 замыкается электрическая цепь. При этом на вывод 1 логического элемента DD1.1 подается напряжение высокого уровня, транзистор VT1 открывается, срабатывает электромагнитный счетчик импульсов Y1 и загорается лампа HL1, подсвечивающая табло "Касание" Одновременно напряжение высокого уровня, поданное на вывод 9 логического элемента DD1.3, запускает генератор, выполненный на логических элементах DD1.3 и DD1.4 и транзисторе VT6. В звуковом излучателе НА1 раздается звуковой сигнал частотой 300...400 Гц, означающий касание. При каждом касании показание счетчика Y1 увеличивается на единицу. Но ведь можно умышленно прижать щуп к одному из краев прорези и таким образом проделать весь путь, совершив лишь одно касание.
В приборе предусмотрено "наказание" за такие неправильные действия. Как только замкнутся контакты Q1 и А, напряжение +5 В окажется приложенным к левому по схеме выводу резистора R6, и через него начнет заряжаться конденсатор С2. Через 1 . 1,5 с откроются транзисторы VT4 и VT5, на входы логического элемента DD2.1 поступит напряжение низкого уровня, а на вывод 4 элемента DD2.2 - напряжение высокого уровня. Начнет работать генератор, выполненный на логических элементах DD2.2-DD2.4. Импульсы с выхода генератора (их частота равна 10.. 15 Гц) будут поступать на вывод 2 логического элемента DD1.1 и вывод 12 элемента DD1.4 Счетчик будет срабатывать с частотой 10...15 Гц. накапливая штрафные очки, а звуковой излучатель НА1 будет издавать прерывистые звуковые сигналы.

Через 15... 20 с после начала выполнения задания конденсатор С1 зарядится до напряжения, достаточного для открывания составного транзистора VT2VT3. Сработает электромагнитное реле К2 и контактами К2.1 самоблокируется. Контактами К2.2 оно включит лампу HL3, подсвечивающую транспарант "Конец", а также снимет питание с лампы HL1 и счетчика Y1. Зазвучит прерывистый звуковой сигнал, извещающий об истечении отведенного времени.

Для установки устройства в исходное состояние необходимо нажать кнопку SB1 "Сброс". Диоды VD1 и VD3 нужны для быстрой разрядки конденсаторов С1 и С2 после снятия с катодов диодов положительного напряжения.

Теперь о деталях тремометра. Вместо микросхемы К155ЛАЗ можно применить аналогичные микросхемы серий К133, К134, К158, КР531, К555 Транзисторы VT2-VT6 могут быть любыми из серий КТ312, КТ315, КТ503, КТ603, КТ608, КТ3117, VT1 - любой из серий КТ801. КТ815, КТ817. Диоды VD1, VD3 - любые из серий Д9, Д311, КД509, КД510, КД521, КД522. Стабистор КС119А (VD2) можно заменить КС 11 ЗА, а также применить взамен два-три последовательно соединенных диода из перечисленных выше Конденсаторы С1-СЗ - оксидные К50-6, К50-16, К50-35; С4 - КМ-6. К10-17, К10-23, К73-17. Переменный резистор R4 - типа СП-1 или СПЗ-4а, остальные резисторы - МЛТ-0,25 Звуковой излучатель ДЭМШ-1А можно заменить телефонным капсюлем любого типа сопротивлением 60...200 Ом, а также вызывным прибором ВП-1.Реле К1 - РЭС-10 (паспорт РС4.524.304 или РС4.524315). или РЭС-15 (паспорт РС4.591.002 или РС4.591.005). Электромеханический счетчик Y1 -типа СИ206 или СИ100. Кнопка SB1 - любого типа с контактами на размыкание.

Для питания тремометра потребуются источник постоянного стабилизированного напряжения 5 В при токе не менее 300 мА и источник постоянного нестабилизированного напряжения 24 В при токе не менее 500 мА.

Переднюю панель прибора, в которой сделаны прорези, желательно выполнить из нержавеющей стали толщиной 1...1,5 мм. Щуп Q1 можно сделать из вязальной спицы диаметром 1...1,5 мм и длиной 150...200 мм.

Переменным резистором R4 можно устанавливать различное время выполнения задания.

Для расширения возможностей тремометра можно рекомендовать замену электромеханического счетчика счетчиком на цифровых микросхемах, изменение тона звукового сигнала по окончании отведенного времени. Эти усовершенствования предлагается сделать самостоятельно.


Автомат уличного освещения


Схема автомата, позволяющего автоматически включать вечером и выключать утром уличное освещение, представлена на рис. 91. Датчиком освещенности является фоторезистор R4. Когда он затемнен, его сопротивление велико (несколько мегаом), на входах логического элемента DD1.1 - напряжение высокого уровня, такое же напряжение на выходе элемента DD1.2. Транзистор VT1 и тринистор VS1 открыты, и уличные осветители EL1 включены.

При наступлении рассвета сопротивление фотодатчика R4 уменьшается, логические элементы DD1.1 и DD1.2 переключаются в противоположные состояния, транзистор VT1 и тринистор VS1 закрываются и фонари на улице гаснут.

На логических элементах DD1.1, DD1.2 и резисторах R2, R3 выполнен триггер Шмитта. Это устройство, как и обычный (счетный) триггер, обладает двумя устойчивыми состояниями. Но в отличие от счетного триггера, состояние которого изменяется после прихода очередного импульса на вход, триггер Шмитта переключается при изменении уровня входного напряжения. Можно так подобрать резисторы R2 и R3, что пороги переключения при увеличении входного напряжения и при его уменьшении не будут равны между собой. Например, для нашего триггера при увеличении входного напряжения порог переключения может составлять 3 В, а при уменьшении напряжения 2 В. Разность порогов переключения называют гистерезисом триггера. Гистерезис тем больше, чем больше отношение R2/R3.

Если в автомате не использовать триггер Шмитта (т. е. резистор R3 исключить, а R2 замкнуть накоротко), то при изменении освещенности может наблюдаться мерцание осветительных ламп, при этом на выходе элемента DD1.2 будет напряжение, находящееся между напряжениями низкого и высокого уровней. В триггере Шмитта такого быть не может, поскольку обратная связь через


резистор R3 с выхода элемента DDL2 на вход элемента DD1.1 ускорит процесс переключения, сделает его лавинообразным. Такую обратную связь называют положительной. Работа триггера Шмитта уже рассматривалась при описании реле времени и регулятора мощности (см. рис. 52 и 72) для формирования прямоугольных импульсов из синусоидального сигнала.

В качестве датчика освещенности можно использовать фоторезисторы ФС-К (с любыми цифрами), а также фотодиоды ФД-1. ФД-2, ФД-3 (подключают катодом к резисторам R1, R2).

Фотодатчик следует располагать в таком месте, куда не попадает прямой свет фонарей EL1, иначе автомат будет работать неустойчиво. Резистором R1 можно изменять уровень освещенности, при которой включаются и выключаются осветители. Разницу в порогах включения и выключения осветительных ламп можно изменять подбором резистора R2.

Максимальная мощность осветительных ламп определяется типами тринистора VS1 и диодов VD2-VD5. В данном случае она составляет 2 кВт. Тринистор и диоды устанавливают на радиаторы.



Автоматы лестничного освещения


Известно, что на ночное освещение подъездов жилых домов тратится огромное количество электроэнергии, причем большую часть времени свет горит впустую. Чтобы избежать ненужных затрат энергии, необходимо оснастить подъезды домов автоматами, включающими на непродолжительное время свет только тогда, когда в этом есть необходимость. Ниже приведены схемы двух вариантов автоматов лестничного освещения.

Схема первого из них представлена на рис. 89. Допустим, что питание подано на устройство, а конденсатор С2 разряжен. Стабилитрон VD2 и составной транзистор VT1VT2 в это время закрыты; на базу транзистора VT3 через резистор R3 подается положительное напряжение, открывающее этот транзистор. В цепи управляющего электрода тринистора VS1 течет ток, тринистор открыт и на этажах горят осветительные лампы (на схеме они обозначены EL1). По мере зарядки конденсатора С2 через резистор R2 напряжение на его обкладках увеличивается. Когда оно достигает напряжения стабилизации стабилитрона VD2, последний открывается, затем открываются транзисторы VT1, VT2, а транзистор VT3 закрывается. Тринистор VS1 также закрывается, и осветительные


лампы EL1 гаснут. В таком состоянии устройство находится большую часть времени, потребляя от сети ток около 2 мА. Для включения освещения необходимо нажать кнопку SB1.

Все элементы устройства, в том числе и осветительные лампы, питаются выпрямленным напряжением, снимаемым с диодного моста VD3-VD6. Напряжение, необходимое для работы транзисторного ключа и для зарядки конденсатора С2 (около 12 В), получается на выходе параметрического стабилизатора VD 1 R4. Конденсатор С 1 сглаживает пульсации напряжения. Резистор R1 ограничивает ток разрядки конденсатора С2 при нажатии кнопки SB1. Кроме того, наличие этого резистора повышает электробезопасность при пользовании устройством в случае нарушения изоляции кнопки SB1.

Подача напряжения на управляющий электрод тринистора VS1 с его анода (через открытый транзистор VT3) обеспечивает протекание тока в цепи управляющего электрода лишь до момента включения тринистора, т.
е. в течение долей миллисекунды в начале каждого полупериода. В результате этого на транзисторе VT3 рассеивается очень незначительная мощность.

Неоновую лампу HL1 устанавливают рядом с кнопкой SB1, чтобы ее можно было легко отыскать в темноте. Такие же кнопки устанавливают на лестничных клетках этажей и соединяют их параллельно. Соответствующие им неоновые лампы подключают к сети через резисторы 200 кОм (на схеме - R6).

Максимальная суммарная мощность осветительных ламп, которыми может управлять автомат лестничного освещения, составляет 2 кВт. Тринистор VS1 должен быть установлен на радиаторе с поверхностью охлаждения около 300 см^2, диоды VD3-VD6 - на четырех радиаторах площадью по 70 см^2 каждый. Если мощность нагрузки не превышает 300 Вт, тринистор и диоды устанавливать на радиаторы не обязательно.

На рис. 90 приведена схема второго варианта автомата лестничного освещения, в котором используется микросхема К176ЛА7. Напряжение с конденсатора С2 поступает на входы логического элемента DD1.1. Пока напряжение на конденсаторе меньше напряжения порога переключения этого элемента, на его выходе -напряжение высокого уровня, которое открывает транзистор VT1. При этом открывается тринистор VS1 и подается напряжение на осветительные лампы EL1. При дальнейшей зарядке конденсатора С2 логический элемент DD1.1 переключается, на его выходе появляется напряжение низкого уровня, транзистор VT1 и тринистор VS1 закрываются и лампы гаснут.



На логических элементах DD1.2 и DD1.3 этой же микросхемы собран генератор, формирующий импульсы с частотой около 1 Гц. С такой частотой мигает неоновая лампа HL1, установленная около кнопки SB1.

Транзисторы КТ315Б можно заменить любыми из этой серии, а также использовать транзисторы КТ312, КТ316, КТ317, КТ201 с любыми буквами; КТ605Б можно заменить на КТ605А, КТ604, КТ904 с любыми буквами. Тринистор КУ202Н можно заменить КУ202М (К, Л), а если мощность ламп не будет превышать 400 Вт, то можно применять тринисторы КУ201К, КУ201Л. Диоды КД202К можно заменить на КД202 с буквами М, Н, Р, а также на любые из серий Д246, Д247, Д248.


Стабилитрон КС212Ж можно заменить на Д814Г, Д814Д, КС213Ж, КС215Ж, КС168А - на КС168В, КС162А, КС156А, Д814А; КС182Ж - на Д814Б, КС182А, КС191А. Оксидные конденсаторы - типов К50-6, К50-16, К50-20 или К53-1; конденсатор СЗ (см. рис. 90) - типов КМ-б, К 10-17 или МБМ. Все резисторы -МЛТ. Кнопка SB1 - типов КП1, КЗ, КМ1-1, КМД1-1 или звонкового типа.

Налаживание устройства сводится к подбору сопротивления резистора R2 для получения нужной длительности свечения ламп. При обозначенном на схемах номинале резистора R2 длительность горения ламп составляет 2...3 мин. Корпус, в котором собран автомат лестничного освещения, устанавливают на одном из этажей здания. Кнопки SB1 с неоновыми лампами HL1 подключают к устройству проводами любого сечения. Осветительные лампы EL1 должны быть подключены проводами достаточного сечения; так, при суммарной мощности ламп 2 кВт сечение проводов должно быть 1,5...2 мм^2

При изготовлении и установке устройства следует особое внимание обратить на надежность изолирующих частей кнопок SB1.


Карманный электронный секундомер


Карманный электронный секундомер позволяет производить отсчет текущего времени от 1 до 99 с в диапазоне "Секунды" и от 1 до 99 мин в диапазоне "Минуты". Кроме того, устройство генерирует случайные числа в диапазоне I... 99.

Принципиальная схема секундомера представлена на рис. 65. На микросхеме DD1 выполнен генератор импульсов, частота которых стабилизирована кварцевым резонатором Z1, а также делители частоты. На выходе М (вывод 10 микросхемы) импульсы следуют с периодом 1 мин, на выходе S1 (вывод 4) - с периодом 1 с, на выходе F (вывод 11) - с частотой 1024 Гц.

Если контакты выключателя SB1 "Пуск" разомкнуты, то все делители микросхемы DD1 находятся в исходном состоянии и импульсы на выходах М, S1, F отсутствуют. При замыкании контактов этого выключателя на указанных выходах появляются импульсы. На схеме показано такое положение контактов кнопочных переключателей SB2 и SB3, при котором на счетный вход микросхемы DD2 поступают импульсы с периодом следования 1 мин.

Микросхема К176ИЕ4 (DD2, DD3) содержит двоичный декадный счетчик и преобразователь его состояний в сигналы управления семисегментным индикатором. Триггеры декады устанавливаются в нулевое состояние при подаче напряжения высокого уровня на вход R, а переключаются спадами импульсов, поступающих на вход С. На выходах a-g формируются выходные сигналы, обеспечивающие на семисегментном индикаторе свечение цифр, соответствующих состоянию декады. При подаче напряжения низкого уровня на управляющий вход S состояние декады определяется напряжением высокого уровня на выходах a-g, а при подаче напряжения высокого


уровня на вход S - напряжением низкого уровня на выходах a-g. Такое переключение уровней выходных сигналов расширяет область применения микросхемы. Выход Р микросхемы - выход переноса, на котором в момент перехода декады из состояния 9 в состояние 0 формируется отрицательный перепад напряжения. Этот выход служит для связи с последующими разрядами.

Таким образом, при подаче на вход С микросхемы DD2 минутных импульсов цифровые семисегментные люминесцентные индикаторы отображают текущее время в минутах: HG1 - единицы минут, HG2 - десятки минут.


При нажатии кнопки SB3 "ГСЧ" ( генератор случайных чисел) на вход микросхемы DD2 поступают импульсы с частотой 1024 Гц. За время удержания кнопки (1...3 с) счетчики DD2, DD3 неоднократно переполняются, поэтому индикаторы после отпускания кнопки высвечивают случайное число.

Для индикации режима работы секундомера на анод разделительной точки индикатора HG1 (вывод 11) подаются секундные импульсы с выхода S1 микросхемы DD1, поэтому при нажатой кнопке SB1 "Пуск" точка на индикатор мигает с периодом 1 с.

Аноды и сетки цифровых индикаторов питаются напряжением 9 В, а нити накала индикаторов - переменным напряжением 0,8 В с выхода преобразователя напряжения. Преобразователь напряжения, выполненный на транзисторах VT1, VT2 и трансформаторе Т1, представляет собой симметричный автоколебательный мультивибратор. Его частота определяется в основном сопротивлениями резисторов R6, R7 и числом витков обмотки I трансформатора Т1. В данном случае частота составляет около б... 8 кГц. Ток, потребляемый преобразователем под нагрузкой от источника питания, равен 10...15 мА. В принципе питание нитей накала можно осуществлять от источника напряжением 9 В через ограничительный резистор, однако экономичность такого секундомера была бы значительно хуже (нить накала одного индикатора потребляет ток 45..,55 мА).

О деталях секундомера. Используемые микросхемы аналогов в других сериях не имеют. Цифровые индикаторы ИВ-3А можно заменить на ИВ-6, однако последние имеют несколько большие габаритные размеры и ток нити накала. Транзисторы VT1 и VT2 -любые из серий КТ312, КТ315, КТ503, КТ3117. Резисторы-типа МЛТ-0,25. Конденсаторы С1, С2 - типов КТ, К10-7, К10-23; СЗ-С5 -КЛС, КМ-6, К10-23; С6 - К50-6, К50-16, К50-12. Трансформатор 01 намотан на ферритовом кольце К 10х6х3 с магнитной проницаемостью 600....1000. Обмотка I содержит 420 витков провода ПЭВ-2 0,10 с отводом от середины; обмотка II содержит 35 витков провода

ПЭВ-2 0,17. Выключатели SB1, SB4 и переключатели SB2, SB3 -типа П2К: SB1, SB2, SB4 - с фиксацией положения, SB3 - без фиксации.

Секундомер собран на отрезке универсальной печатной платы (рис. 16, а), монтаж выполнен проводами. Корпусом служит уже упоминавшаяся выше пластмассовая коробка для рыболовных принадлежностей размерами 120 х 70 х 20 мм (рис. 66).

В налаживании секундомер не нуждается.




Переключатели елочных гирлянд


Накануне Нового года многих радиолюбителей волнует вопрос:

как оживить новогоднюю елку? Ниже предлагаются несколько вариантов переключателей елочных гирлянд, различающихся по степени сложности и реализуемым световым эффектам.

Простейший переключатель поочередно коммутирует две гирлянды (рис. 38). На логических элементах DD1.1, DD1.2 выполнен генератор, а на транзисторах VT1, VT2 собраны высоковольтные ключи для управления тринисторами VS1, VS2. Питание на микросхему подается от параметрического стабилизатора R4VD1 с конденсатором С1. Постоянное напряжение как для микросхемы DD1, так и для ламп гирлянд EL1, EL2 снимается с выпрямительного моста VD2.

Для создания эффекта "Бегущий огонь" необходимо поочередно переключать не менее трех гирлянд. Схема переключателя (первый вариант), управляющего тремя гирляндами, представлена на рис. 39. Основу устройства составляет трехфазный мультивибратор, выполненный на трех инвертирующих логических элементах микросхемы



DD1. Времязадающие цепи образованы элементами R1-R3, С1-СЗ. В любой момент на одном из выходов логических элементов имеется напряжение высокого уровня, которое открывает транзисторно-тринисторный ключ. Следовательно, одновременно светятся лампы только одной гирлянды. Поочередное переключение ламп гирлянд EL1-EL3 позволяет получить эффект "Бегущий огонь".

В мультивибраторе могут работать инверторы микросхем серий К555 и К155. Во втором случае сопротивления резисторов R1-R3 не должны превышать 1 кОм. Можно использовать и КМОП-микросхемы (К176, К561), при этом сопротивления времязадающих резисторов можно будет увеличить в 100...1000 раз, а емкости конденсаторов С1-СЗ во столько же раз уменьшить.

Изменение частоты переключения гирлянд можно производить изменением сопротивления резисторов R1-R3. Одновременно управлять ими затруднительно (строенных переменных резисторов для широкого применения промышленность не выпускает). Это является недостатком данного переключателя гирлянд.

На рис. 40 приведена схема переключателя гирлянд (второй вариант) с регулируемой скоростью движения "Бегущего огня".


Как работает это устройство? На логических элементах DD1.1, DD1.2 собран генератор прямоугольных импульсов, частота следования которых составляет 0,2...1 Гц. Импульсы поступают на вход счетчика, состоящего из двух D-триггеров DD2.1 и DD2.2 микросхемы DD2. Благодаря наличию обратной связи между элементом DD1.3 и входом R триггера DD2.1 счетчик имеет коэффициент пересчета 3 и в любой момент закрыт один из транзисторов VT2-VT4. Если, допустим, закрыт VT2, то положительное напряжение с

его коллектора будет подано на управляющий электрод тринистора VS1, тринистор откроется и загорятся лампы гирлянды EL1. Частоту переключения регулируют переменным резистором R3 генератора.

В устройстве микросхемы серии К155 можно заменить соответствующими аналогами из серии К 133. Транзисторы VT1-VT4 могут быть из серий КТ315, КТ3117, КТ603, КТ608 с любыми буквами. Тринисторы VS1-VS3 могут быть типов КУ201, КУ202 с буквами К-Н.

Источник, питающий микросхемы и транзисторы устройства, должен быть рассчитан на ток не менее 200 мА.

Недостатком переключателя является необходимость применения трансформаторного блока питания. Это обусловлено сравнительно большим током, потребляемым микросхемами К155ЛАЗ и К155ТМ2. Существенно уменьшить ток потребления можно, применив КМОП-микросхемы, в этом случае питание микросхем может осуществляться от простейшего параметрического стабилизатора, как это сделано в переключателе двух гирлянд (см. рис. 38).

Схема переключателя трех гирлянд (третий вариант) на микросхемах серии К561 представлена на рис. 41,а. Генератор выполнен на логических элементах DD1.1, DD1.2, а счетчик с коэффициентом





пересчета 3 - на двух D-триггерах микросхемы DD2. Эпюры напряжений на выходах логических элементов показаны на рис. 41,6. Они помогут понять логику работы устройства. Транзисторно-тринисторные ключи для управления гирляндами, выпрямитель и стабилизатор для питания микросхем - такие же, как и в переключателе по схеме рис. 39 (в качестве стабилитрона VD1 в этом случае нужно использовать КС191Ж или Д814В).



У описанных выше устройств " Бегущего огня" есть общий недостаток: неизменность логики работы. Лампы в гирляндах переключаются только в установленном порядке, изменять можно лишь частоту переключения. В то же время желательно, чтобы иллюминация была как можно более разнообразной, не надоедала и не утомляла зрение. Это означает, что должна быть предусмотрена возможность изменения не только продолжительности горения ламп, но и очередности их переключения.

На рис. 42 приведена схема переключателя гирлянд, отвечающего этим условиям.

"Сердцем" устройства является микросхема К155РУ2 - оперативное запоминающее устройство на 16 четырехразрядных слов (под словом в данном случае понимается совокупность логических нулей и единиц, например 0110, 1101 и т. д.). Как действует такая микросхема? Ее четыре входа (D1-D4) предназначены для подачи информации, которую нужно записать в память. Эти входы называются информационными. На четыре других входа (А1-А4) подают двоичный код адреса ячейки, которую требуется выбрать для записи или считывания информации. Эти входы называют адресными. Изменяя двоичный код на этих входах от 0000 до 1111, можно обратиться к любой из 16 ячеек. Подавая сигнал на вход W, выбирают нужный режим работы микросхемы: если на входе W напряжение низкого уровня, то производится запись в ячейку, а если напряжение высокого уровня, то можно считывать информацию, хранящуюся в ячейках памяти микросхемы. При считывании информация поступает на выходы С1-С4. Выходы у микросхемы - с открытым коллектором, причем если в ячейке памяти записана логическая 1, то соответствующий транзистор выхода будет открыт (разумеется, в его коллекторную цепь должна быть включена нагрузка - резистор).

Таким образом, для записи числа в какую-либо ячейку памяти необходимо подать на входы D1-D4 соответствующие логические уровни, а на входы А1-А4 - двоичный код адреса требуемой ячейки. Затем на вход W подают напряжение низкого уровня - и информация записана. Для считывания информации необходимо подать на вход W напряжение высокого уровня.


Тогда при смене кода адреса на

выходах С1-С4 будут появляться сигналы, соответствующие, содержимому соответствующих ячеек.

Вход V служит для разрешения работы микросхемы: при подаче на него напряжения высокого уровня запись и считывание не производятся.

Рассмотрим работу переключателя по его принципиальной схеме. С помощью кнопок SB6 "Пуск" и SB7 "Сброс" устанавливают требуемый режим работы устройства: после нажатия кнопки "Сброс" можно производить запись программы в ячейки памяти микросхемы, а после нажатия кнопки "Пуск" происходит считывание записанной программы.

При нажатии на кнопку SB7 "Сброс" RS-триггеры, собранные на логических элементах DD1.1 и DD1.2, DD1.3 и DD1.4,DD2.1 и DD2.2, DD2.3 и DD2.4, DD4.1 и DD4.2, установятся в исходное состояние, при котором на выходах логических элементов DD1.1, DD1.3, DD2.1, DD2.3 и DD4.1 - напряжение низкого уровня. Поступая на вывод 12 логического элемента DD4.4, оно запрещает работу тактового генератора, собранного на логических элементах DD4.3, DD4.4 и транзисторе VT1.

Затем с помощью кнопок SB1-SB4 набирают двоичное слово для записи в первую ячейку памяти. Допустим нам требуется записать 0111. Для этого нужно нажать кнопки SB2, SB3, SB4. При этом триггеры DD1.3DD1.4, DD2.1DD2.2, DD2.3DD2.4 переключатся и зажгутся светодиоды HL2, HL3, HL4. После этого нажимают кнопку SB5 "Запись". Импульс с выхода триггера (вывод 3 логического элемента DD3.1) через дифференцирующую цепь C2R13 и логический элемент DD3.3 поступает на вход W микросхемы памяти DD6. Дифференцирующая цепь C2R13 и логический элемент DD3.3 работают таким образом, что после нажатия кнопки SB5 "Запись" на вход W поступает короткий (длительностью несколько наносекунд) отрицательный импульс, который обеспечивает запись информации, поданной на информационные входы D1-D4 по адресу в соответствии с двоичным кодом на адресных входах А1-А4. В момент отпускания кнопки SB5 "Запись" импульс с выхода логического элемента DD3.1 через конденсатор С1 установит в исходное состояние все RS-триггеры, в которые было предварительно записано двоичное слово.


Импульс, поступивший с выхода логического элемента DD3. 4 на вход С1 двоичного счетчика DD5, увеличит на единицу адрес (двоичный код которого снимается с выводов 12, 9, 8 и 11 рассматриваемой микросхемы). Заметим, что установка в исходное состояние счетчика адреса DD5 не производится (выводы 2 и 3 для обеспечения счетного режима соединены с общим проводом).

После этого кнопками SB1-SB4 набирают новое двоичное слово программы, нажимают кнопку SB5 "Запись" и т. д. - пока в микросхему памяти не будет записана вся программа из 16 четырехразрядных двоичных слов. После того как программа записана, нажимают кнопку SB6 "Пуск", триггер DD4.1 DD4.2 изменяет свое состояние на противоположное, начинает работать генератор на логических элементах DD4.3, DD4.4, импульсы которого поступают на счетчик DD5 и изменяют код адреса ячейки. На входе W теперь все время находится логическая 1, поскольку на выходе логического элемента DD4.2 - логический 0, который подается на вход логического элемента DD3.3. На выходах С1-С4 микросхемы К155РУ2 появляются логические уровни, соответствующие записанной в ячейках памяти информации. Сигналы с выходов С1-С4 усиливаются транзисторными ключами VT2-VT5 и затем поступают на управляющие электроды тринисторов VS1-VS4. Тринисторы управляют четырьмя гирляндами ламп, условно обозначенными на схеме EL1-EL4. Допустим, что на выходе С1 микросхемы DD6 имеется логический 0. В этом случае транзистор VT2 закрыт, через резистор R21 и управляющий электрод тринистора VS1 протекает ток, тринистор открывается и зажигает лампы гирлянды EL1. Если же на выходе С1 логическая 1, то лампы EL1 гореть не будут.

Микросхемы устройства питаются от стабилизированного выпрямителя, собранного на диодном мосте VD2-VD5, стабилитроне VD1 и транзисторе VT6. Лампы гирлянд EL1-EL4 питаются выпрямленным напряжением, снимаемым с диодного моста VD6-VD9. Для отключения гирлянд служит выключатель Q2, для отключения от сети остальных элементов устройства-выключатель Q1.

В устройстве применены следующие детали.


Транзисторы VT2- VT5 могут быть любыми из серий КТ3117, КТ503, КТ603, КТ608, КТ630, КТ801; VT1 - любой из серий КТ503, КТ312, КТ315, КТ316;

VT6 - любой из серий КТ801, КТ807, КТ815. Тринисторы КУ201Л (VS1-VS4) можно заменить на КУ202 с буквами К-Н. Диоды VD2-VD5 помимо указанных могут быть типов Д310, КД509А, КД510А;

можно также использовать мостовые выпрямители КЦ402, КЦ405, КЦ407 (с любыми буквенными индексами).

Диоды КД202К (VD6-VD9) можно заменить на КД202 с буквами Л-Р, а также на Д232, Д233, Д246, Д247 с любыми буквами. Конденсаторы С1, С2 - типа К10-7, К10-23, КЛС или КМ-6; СЗ-С5 -К50-6, К50-16 или К50-20. Все постоянные резисторы - типа МЛТ;

переменный резистор R 16 - СП-1, СП-0,4. В устройстве можно использовать кнопки типа КМ 1-1 или КМ Д 1-1. Можно также

использовать кнопки других типов (например, П2К без фиксации положения). Выключатели Q1 и Q2 - типа "тумблер" (ТВ2-1, ТП1-2, Tl, MT1 и др.). Трансформатор питания 01 выполнен на ленточном магнитопроводе ШЛ 16х20. Обмотка I содержит 2440 витков провода ПЭВ-1 0,08, обмотка II - 90 витков провода ПЭВ-1 0,51. Можно использовать и любые другие трансформаторы мощностью 10...20 Вт, имеющие вторичную обмотку на напряжение 8...10 В и ток 0,5...0,7 А. Подойдут трансформаторы ТВК-70Л2, ТВК-110ЛМ, у которых часть витков вторичной обмотки должна быть удалена для получения нужного напряжения.

Большая часть элементов устройства смонтирована на текстолитовой плате с размерами 120 х 145 мм (рис. 43,а). Монтаж выполнен



проводами. Транзистор VT6 установлен на дюралюминиевом уголке площадью около 30 см^2 (он служит радиатором). Диоды VD6-VD9 и тринисторы VS1-VS4 установлены на плате без радиаторов, при этом суммарная мощность переключаемых ламп не должна превышать 500 Вт. Кнопки SB1- SB7 (типа КМ1-1) установлены: на планке из текстолита (рис. 43,6), которая крепится к основной плате двумя винтами МЗ.

За пределами платы находятся следующие элементы: трансформатор питания Tl, держатель предохранителя FU1, выключатели питания Q1 и Q2, переменный резистор R 16.


Элементы платы соединены с ними многожильным проводом. Провода, соединяющие аноды тринисторов VS1-VS4 с лампами EL1-EL4, припаяны непосредственно к лепесткам тринисторов.

Сечение проводов, которыми выполнены силовые цепи, должно быть не менее 1 мм^2.

Конструкция устройства произвольная. На верхней крышке корпуса должны быть расположены кнопки SB1-SB7, выключатели питания Q1 и Q2, светодиоды контроля записи программы HL1-HL4, а также ручка переменного резистора R 16, с помощью которого изменяют скорость переключения гирлянд. На боковой стенке корпуса установлены держатель предохранителя FU1 и гнезда для подключения гирлянд (на схеме они не показаны).

Если все детали исправны и в монтаже нет ошибок, то устройство начинает работать сразу. Следует отметить, что достигаемые световые эффекты во многом зависят от взаимного расположения ламп гирлянд. Наиболее распространенным является такое их расположение, когда за лампой первой гирлянды следует лампа второй гирлянды, затем третьей, четвертой и т. д. На рис. 44 показана схема такого включения ламп.

Программирование переключателя ведут следующим образом. Вначале на бумаге составляют программу, представляющую собой запись состояния ламп всех четырех гирлянд в каждом из 16 тактов



работы устройства. Включенное состояние гирлянды обозначают логической 1, выключенное - логическим 0. Затем нажатием кнопки SB7 "Сброс" устанавливают микросхемы устройства в исходное состояние. После этого последовательным нажатием кнопок SB1-SB4 набирают .первое слово программы, обращая внимание на зажигание светодиодов HL1-HL4, и нажимают кнопку SB5 "Запись". Так производят запись информации во все 16 ячеек микросхемы. Затем нажимают кнопку SB6 "Пуск" - переключатель переходит в рабочий режим.

При программировании следует помнить, что информация должна быть записана во все 16 ячеек памяти микросхемы, поскольку при включении питания состояние этих ячеек оказывается неопределенным.

В табл. 3 показаны некоторые варианты программирования переключателя гирлянд для получения разнообразных световых эффектов.


Логические 1 в каждом слове слева направо показывают, какие из кнопок SB1-SB4 соответственно следует нажать.

Первая и вторая программы обеспечивают эффект "бегущего огня", остальные программы - более сложные эффекты. Число программ, которые можно реализовать с помощью данного устройства, велико, и это открывает простор для фантазии оператора. Следует также помнить, что изменение скорости переключения гирлянд открывает широкие возможности для получения различных световых эффектов.

Суммарная мощность ламп, переключаемых устройством, может быть увеличена до 1500 Вт, при этом диоды VD6-VD9 должны быть установлены на радиаторы площадью 40... 50 см^2 каждый.

Если в распоряжении радиолюбителя имеются симметричные тиристоры (симисторы) серии КУ208Г, их также можно использовать для управления лампами гирлянд. Подключать симисторы следует в соответствии со схемой, представленной на рис. 45





(изображена схема только одного канала, остальные-аналогичные). Сопротивления резисторов R21-R24 (см. рис. 42) в этом случае необходимо увеличить до 1...3 кОм. Транзисторы КТ605А можно заменить на КТ605Б, КТ940А, диодные мосты VD6 могут быть КЦ402, КЦ405 с буквами А, Б, Ж, И.

Второй вариант симисторного узла коммутации представлен на рис. 46. Его отличие от предыдущего в том, что транзисторные ключи VT2-VT5 с резисторами R21-R24 (см. рис. 42) заменены инвертирующими логическими элементами микросхемы DD7 (резисторы R17-R20 в схеме рис. 42 при этом сохраняются). Такое схемное решение несколько упрощает конструкцию.

Узел управления симисторами можно сделать еще более простым, если использовать электромагнитные реле (рис. 47). Обмотки реле, как видно из схемы, включены вместо резисторов R21-R24. В переключателе могут работать любые реле, срабатывающие от напряжения 8...12 В при токе до 100 мА, например РЭС-10 (паспорта РС4.524.303, РС4.524.312), РЭС-15 (паспорта РС4.591.003, РС4.591.004, РС4.591.006), РЭС-47 (паспорта РФ4.500.049, РФ4.500.419), РЭС-49 (паспорт РС4.569.424).


Кроме простого схемного решения имеется еще одно преимущество - гальваническая развязка низковольтной части устройства от сети питания, что увеличивает безопасность пользования переключателем. Недостатком же является меньший срок службы, вызванный износом

контактов реле.

И в заключение еще одна рекомендация. При выключении напряжения сети питания (даже кратковременном - несколько





секунд) разрушается программа, записанная в микросхему памяти. Поэтому целесообразно предусмотреть аварийное переключение цепей питания микросхем устройства на питание от гальванической батареи или аккумулятора. Схема, позволяющая реализовать это, показана на рис. 48.

В нормальном режиме микросхемы переключателя питаются от выпрямителя, и ток протекает через диод VD11. Диод VD10 при этом закрыт, поскольку к нему приложено небольшое (0,5...1 В) обратное напряжение. При отключении сетевого питания закрывается диод VD11, но открывается диод VD10, и питание микросхемы осуществляется от батареи GB1. Конденсатор С6 гасит импульсы напряжения, которые возникают в моменты переключения питания с сетевого на батарейное и наоборот, и таким образом повышает помехоустойчивость устройства. Диоды VD10, VD11 могут быть любого типа, допускающие ток не менее 300 мА (например, подойдут Д226, КД105 с любыми буквами). Батарея GB1 - 3336Л. При использовании в переключателе этого узла следует обратить внимание на выходное напряжение выпрямителя: оно должно составлять 5...5,5 В (но не менее 5 В), в противном случае может происходить постоянная разрядка батареи GB1. Продолжительность питания от батареи зависит от ее емкости. При длительных пропаданиях напряжения в сети (более 15...20 мин) такое аварийное питание нецелесообразно, поскольку лампы гирлянд все равно не работают, а новую программу можно набрать всего лишь за 3...5 мин.


Преобразователь напряжения для электробритвы


Данное устройство позволяет питать в полевых условиях электроприборы, рассчитанные на напряжение сети 220 В (электробритва, электропаяльник, электрощипцы для завивки волос и др.), мощностью до 20 Вт. Источником питания служит аккумуляторная батарея или генератор постоянного тока напряжением 12 В.

Преобразователь напряжения (рис. 67) выполнен по схеме симметричного мультивибратора. Его частота в основном определяется сопротивлениями резисторов R2 и R4, а также числом витков обмотки I трансформатора Т1. Для указанных на схеме номиналов резисторов R2, R4 и приведенных ниже параметров трансформатора Т1 частота преобразования равна 20...25 кГц (под нагрузкой).


Применение составных транзисторов VT1VT2 и VT3VT4 позволило использовать резисторы смещения R1 и R3 достаточно большого сопротивления, что повышает экономичность устройства.

Высокое напряжение вторичной обмотки трансформатора Т1 выпрямляется мостовым выпрямителем VD1-VD4, пульсации сглаживаются конденсатором С3. В зависимости от положения контактов переключателя SA1 в нагрузку подается постоянное или переменное напряжение. Если нагрузка допускает питание как переменным, так и постоянным напряжением (электропаяльник), то ее следует питать переменным напряжением - в этом случае на диодах VD1-VD4 не рассеивается мощность и экономичность преобразователя выше. Некоторые же электроприборы допускают питание только постоянным напряжением.

Транзисторы VT1, VT3 могут быть любыми из серий КТ815, КТ817, КТ608; VT2, VT4 могут быть также типов КТ805, КТ903 (с любыми буквами). Выпрямительные диоды должны быть рассчитаны на работу в цепях высокой частоты (до 30 кГц), иметь обратное напряжение не менее 300 В и выпрямленный ток не менее 0,1 А. Помимо указанных на схеме можно использовать диоды КД212 (А, Б), КД213 (А-В), при этом в каждое плечо выпрямительного моста следует включать два последовательно соединенных диода, зашунтированных резисторами сопротивлением 100...200 кОм, мощностью 0,25 Вт (резисторы необходимы для уравнивания обратных напряжений на диодах одного плеча). Конденсаторы Cl, C2 - типа КМ-6, КЛС, К10-23; С3-типа МБМ, МБГО, КБГ-МН. Резисторы -МЛТ-0,25. Переключатель SA1 - тумблер ТП1-2, выключатель Q1 -тумблер ТВ2-1, ТП1-2.

Трансформатор Т1 намотан на ферритовом кольцевом магнитопроводе МЗ000НМ типоразмера К28 х 16 х 9. Обмотка I содержит 20 витков с отводом от середины, ее следует мотать в три провода ПЭВ-2 0,41 (это сделано для возможно более полного использования сечения провода на высокой частоте). Обмотка II содержит 190 витков провода ПЭВ-2 0,31.

Преобразователь собран в любом подходящем корпусе. Около транзисторов VT2, VT4 следует предусмотреть отверстия для свободной циркуляции воздуха. В процессе работы транзисторы нагреваются до температуры 60...80°С. Они установлены на плату без радиаторов.



Регуляторы для холодильников


Подавляющее большинство бытовых холодильников оснащены датчиком температуры. Пока температура среды, окружающей датчик, выше требуемой, контакты датчика замкнуты и компрессор холодильника работает, нагнетая хладагент в камеру охлаждения. При понижении температуры контакты датчика размыкаются и отключают электродвигатель компрессора. Затем цикл работы повторяется. Таким образом .температура в холодильнике поддерживается на постоянном уровне, определяемом настройкой датчика.

Когда датчик выходит из строя, возникает необходимость ремонта холодильника. Холодильник можно сделать вновь работоспособным, если собрать несложное устройство, которое будет регулировать периоды включенного и выключенного состояний компрессора холодильника и, следовательно, температуру холодильного шкафа. Правда, такая система регулирования работает без обратной связи, но опыт эксплуатации подобного устройства показал, что оно обеспечивает неплохую точность поддержания температуры.

Принципиальная схема регулятора представлена на рис. 86. Генератор прямоугольных импульсов и 15-разрядный делитель частоты выполнены на микросхеме К176ИЕ5. Элементы времязадающей цепи генератора (R1 и С1) подключены к выводам 9 и 11 микросхемы, а выходные импульсы снимаются с выхода последнего разряда делителя (вывод 5 микросхемы). Входы установки исходного состояния триггеров R и S постоянно соединены с общим проводом.

Прямоугольные импульсы с периодом следования около 1,5 мин поступают на вход CN микросхемы DD2 (на второй счетный вход СР этой микросхемы подано напряжение высокого уровня, разрешающее счетный режим по входу CN). Микросхема К176ИЕ8 содержит


двоично-десятичный счетчик, совмещенный с дешифратором двоично-десятичного кода в позиционный код. При поступлении счетных импульсов напряжение высокого уровня появляется последовательно на выходах 0, 1, ... , 9.

На логических элементах DD3.3 и DD3.4 выполнен RS-триггер, управляющий исполнительной цепью. Допустим, что питание подано на элементы устройства, а RS-триггер DD3.3DD3.4 находится в состоянии, при котором на выводе 10 микросхемы DD3 присутствует напряжение высокого уровня.
Через делитель R4R5 оно поступает на базу транзистора VT1, открывая последний. Электромагнитное реле К1 срабатывает, и контакты К 1.1 подают ток на управляющий электрод симистора VS1. Симистор находится в проводящем состоянии, и, поскольку он включен в цепь питания реле компрессора холодильника, охлаждающий агрегат работает. Допустим, что подвижный контакт переключателя SA1 соединен с выходом 7 микросхемы DD2. При появлении на этом выходе напряжения высокого уровня на выходе логического элемента DD3.2 возникнет напряжение низкого уровня, которое переключит триггер DD3.3DD3.4 в противоположное состояние. Транзистор VT1 и симистор VS1 закроются, и компрессор холодильника выключится.

При появлении напряжения высокого уровня на выходах 8 и 9 триггер не изменит своего состояния. Когда напряжение высокого уровня появится на выходе 0 микросхемы DD2, спад импульса с выхода элемента DD3.1 через дифференцирующую цепь C2R2R3 переключит триггер в состояние, противоположное предыдущему;

симистор VS1 вновь откроется и включит холодильник. Таким образом, длительности включенного и выключенного состояний холодильника определяются положением подвижного контакта переключателя SA1: чем ниже (по схеме) находится этот контакт, тем больше длительность включенного состояния холодильника, тем ниже температура в холодильном шкафу.

Элементы регулятора питаются от простейшего параметрического стабилизатора с фильтром C3R7VD2C4.

Микросхемы К176ИЕ8 и К176ЛА7 можно заменить соответствующими аналогами из серии К561; микросхема К176ИЕ5 аналогов в других сериях не имеет. В качестве транзистора VT1 можно использовать КТ315, КТ503, КТ3117 с любыми буквенными индексами. Трансформатор Т1 - любого типа, обеспечивающий напряжение на вторичной обмотке 9...12 В при токе не менее 50 мА. Реле К1 - РЭС-64, паспорт РС4.569.724 (725, 726). При отсутствии симистора КУ208Г можно использовать тиристор; при этом контакты реле К 1.1 включают между анодом и управляющим электродом. Понадобится также выпрямительный мост, который "плюсом" подключают к аноду тиристора, а "минусом" - к катоду;



выводы переменного напряжения от моста подключают в разрыв цепи питания реле компрессора.

Регулятор, собранный из исправных деталей и без ошибок, в налаживании не нуждается. В случае необходимости период следования импульсов генератора можно изменить подбором элементов

R1 иС1.

На рис. 87 представлена схема терморегулятора для холодильника, в котором имеется обратная связь по температуре (первый вариант). Датчиком температуры в холодильнике является терморезистор R3. Когда температура в холодильном шкафу ниже заданной, сопротивление терморезистора велико, и на вход триггера Шмитта, выполненного на логических элементах DD1.1, DD1.2, с делителя R1R2R3 подается напряжение, при котором на выходе триггера действует напряжение высокого уровня. При этом на выходах элементов DD1.3, DD1.4, соединенных параллельно для увеличения выходного тока, имеется напряжение низкого уровня. Через открытый диод VD1 это напряжение приложено к эмиттеру однопереходного транзистора VT1, на котором выполнен генератор



управляющих импульсов для симистора. Конденсатор С4 не может заряжаться, и генератор заторможен, импульсы на обмотке II трансформатора Т1 отсутствуют, симистор VS1 выключен, компрессор холодильника не работает. За счет проникновения в холодильную камеру тепла окружающей среды температура в камере повышается, что приводит к уменьшению сопротивления терморезистора. При определенном значении температуры триггер переключится в состояние, при котором на его выходе (вывод 4 микросхемы DD1) установится напряжение низкого уровня. Оно инвертируется элементами DD1.3 и DD1.4 и подается на диод VD1. закрывая его. Теперь конденсатор С4 может заряжаться через резистор R6. Этот процесс зарядки-разрядки происходит периодически, и на вторичной обмотке трансформатора Т1 появляются импульсы частотой около 1...2 кГц, которые открывают симистор. На холодильник подается напряжение, и компрессор включается. Такой процесс периодически повторяется, в результате температура воздуха в холодильной камере поддерживается на заданном уровне с точностью не хуже ±0,5 град.



Источник питания терморегулятора - бестрансформаторный. Конденсаторы С5 гасит избыточное напряжение, а выпрямительный мост выпрямляет его. Напряжение стабилизируется стабилитроном VD1, пульсации сглаживаются конденсатором С1. Конденсатор С2 фильтрует помехи, поступающие из сети и способные вызвать ложные срабатывания триггера Шмитта. Для этого используют и конденсатор СЗ.

Датчик температуры R3 помещают на 10... 15 см ниже дна холодильной камеры. Переменным резистором R1 в холодильной

камере устанавливают желаемую температуру. Ее удобно контролировать по термометру, помещенному в холодильную камеру.

Типономиналы использованных деталей указаны на схеме; их возможные замены, думается, не вызовут затруднений. Заметим лишь, что конденсатор С5 - типа К73-17, а терморезистор R3 -КМТ-1, КМТ-4, КМТ-12, ММТ-6.

На рис. 88 представлена схема второго варианта терморегулятора для холодильника с обратной связью. Отличие от схемы первого варианта (см. рис. 87) состоит в том, что для управления симистором применено электромагнитное реле К1, контакты К 1.1 которого соединяют управляющий электрод симистора с его анодом, открывая симистор. Резистор R6 обеспечивает надежное закрывание транзистора VT1 при напряжении высокого уровня на выходе логического элемента DD1.4 (когда ток базы этого транзистора равен нулю). Диод VD1 гасит импульсы ЭДС самоиндукции, возникающие на обмотке реле К1 в момент его выключения, и тем самым предохраняет от пробоя транзистор VT1. Для повышения помехоустойчивости датчик температуры следует соединять с терморегулятором экранированным проводом.

Какому терморегулятору отдать предпочтение - с обратной связью или без нее? С одной стороны, обратная связь позволяет более точно поддерживать заданную температуру в холодильном шкафу. С другой стороны, наличие триггера с узкой зоной нечувствительности делает терморегулятор чувствительным к различным помехам, поступающим по сетевым проводам.Кроме того, при высокой температуре окружающей среды может оказаться, что холодильный агрегат не в состояний обеспечить заданную низкую



температуру, в результате чего компрессор будет все время работать. И хотя в холодильниках имеется защитное тепловое реле мотора компрессора, такой режим нежелателен.

У автора уже на протяжении восьми лет эксплуатируется терморегулятор без обратной связи (рис. 86), и он показал хорошие результаты. Температура контролируется по термометру. С наступлением теплого времени года подвижный контакт переключателя SA1 нужно перемещать вниз по схеме, обеспечивая большую относительную длительность включенного состояния компрессора.


Регуляторы температуры


Регуляторы температуры, или, как их еще называют, терморегуляторы, предназначены для поддержания заданной температуры жидкости (например, фотораствора, воды в аквариуме, воды в системе электрического водяного отопления), воздуха в теплице, в жилом помещении и пр.

Принцип работы любого терморегулятора состоит в плавном или скачкообразном изменении мощности нагревательного элемента в соответствии с температурой датчика.

В терморегуляторе со скачкообразным изменением мощности в нагрузке нагревательный элемент отключается, как только температура датчика достигает определенного значения, и выключается при понижении температуры до ее заданного значения. Нагревательный элемент при этом находится в одном из двух состояний: включен или выключен, поэтому регулятор с таким законом управления часто называют релейным.

Рассмотрим работу регулятора по его принципиальной схеме (рис. 92). Основой терморегулятора является триггер Шмитта, выполненный на логических элементах DD1.1, DD1.2 и резисторах R4, R5. На вход триггера поступает напряжение с делителя R1R2R3. Датчиком температуры служит терморезистор R3. При увеличении температуры его сопротивление уменьшается, и поданное на вход триггеров напряжение также уменьшается, что приводит к переклю-


чению триггера. При этом на его выходе (вывод 4 микросхемы) устанавливается напряжение низкого уровня, транзистор VT1 и тринистор VS1 закрываются, нагреватель, подключенный к гнезду XS1, обесточивается. Температура воздуха или жидкости начинает уменьшаться, и при некотором ее значении триггер вновь переключается, включается нагреватель. В процессе работы такие включения и выключения периодически повторяются.

Мощность нагревателя не должна превышать 200 Вт. Если мощность необходимо увеличить, следует подобрать тринистор VS1 и соответственно мощность выпрямителя VD2. Так, для мощности нагревателя 2000 Вт потребуются тринистор КУ202М и диоды Д246 (4 шт.), которые включают по схеме выпрямительного моста. Тринистор и диоды следует устанавливать на радиаторах с поверхностью охлаждения 300 см^2 (для тринистора) и 70 см^2 (для каждого диода).


Терморезистор R3 может быть любого типа, например КМТ-1, КМТ-4, КМТ-12, ММТ-6 и др.

Печатная плата терморегулятора показана на рис. 93.

Температуру, при которой происходит переключение триггера, устанавливают переменным резистором R1. Точность поддержания температуры отчасти определяется разницей между напряжениями срабатывания триггера, т.е. его гистерезисом, и может подстраиваться резистором R4. Использовать резистор сопротивлением менее 10 кОм не следует, так как излишне малый гистерезис триггера Шмитта может привести к неустойчивой работе терморегулятора.

Однако точность регулирования температуры определяется не только гистерезисом триггера Шмитта: на точность в большой степени влияют также масса нагревателя и среды (воды и пр.), т.е. инерционность системы. После выключения нагревателя температура окружающей среды некоторое время продолжает увеличиваться благодаря отдаче тепла от нагревателя в окружающую среду. Точно так же и при включении нагревателя температура среды начинает



повышаться не сразу, а с некоторой задержкой. Таким образом, возникает погрешность регулирования температуры, которая может .достигать нескольких градусов. Избавиться от этого недостатка можно применением терморегулятора с плавным регулированием мощности нагревательного элемента.

Схема такого терморегулятора представлена на рис. 94. Датчиком температуры является терморезистор R 11, имеющий отрицательный температурный коэффициент сопротивления (другими словами, его сопротивление уменьшается с повышением температуры). Терморезистор является одним из плеч делителя напряжения R11R14, сигнал с выхода которого поступает через резистор R 13 на неинвертирующий вход операционного усилителя (ОУ) (вывод 5 микросхемы DA3). На инвертирующий вход ОУ (вывод 4 микросхемы DA3) через резистор R 12 подается задающее напряжение с движка переменного резистора R9. Микросхема DАЗ усиливает поданные на ее входы сигналы, причем коэффициент усиления определяется сопротивлениями резисторов R12, R13, R15, R16; если соблюдается пропорция R13/R15=R12/R16, то коэффициент усиления К определяется соотношением K=R16/R12.



С выхода микросхемы DАЗ ( вывод 10) усиленный сигнал поступает через резистор R6 на неинвертирующий вход компаратора (микросхема DA2).

Компаратором называется устройство, предназначенное для сравнения двух аналоговых сигналов, поданных на .его входы. Компаратор представляет собой усилитель с высоким (десятки и сотни тысяч раз) коэффициентом усиления.



Выходные каскады усилителя выполнены таким образом, что напряжение на выходе компаратора может принимать одно из двух значений: высокого или низкого уровня, т. е. компаратор имеет цифровой выход.

Интегральный компаратор К554САЗ, используемый в терморегуляторе, имеет открытый коллекторный выход, рассчитанный на подключение нагрузки током до 50 мА. Выходной транзистор открыт (т. е. на выходе при подключенной нагрузке действует напряжение низкого уровня), если напряжение на выводе 4 больше напряжения на выводе 3 микросхемы DA2. При противоположном соотношении напряжений на выходе компаратора будет напряжение высокого уровня.

На инвертирующий вход компаратора (вывод 4) подается пилообразное напряжение, которое синхронизировано напряжением сети и имеет частоту 100 Гц. Генератор пилообразного напряжения выполнен на транзисторах VT1, VT2. Напряжение с выпрямительного моста VD1 (рис. 95, эпюра 1) поступает на базу транзистора VT1. Большую часть времени транзистор открыт, а в моменты, когда синусоидальное выпрямленное напряжение приближается к нулю, транзистор закрывается. На его коллекторе формируются короткие прямоугольные импульсы (рис. 95, эпюра 2), которые подаются на базу транзистора VT2. Пока напряжение на базе равно нулю, на коллекторе транзистора формируется нарастающее напряжение (конденсатор СЗ заряжается через резистор R4). В момент появления положительного импульса на базе транзистора VT2 последний



открывается, и напряжение на коллекторе уменьшается почти до нуля (точнее, до напряжения прямого падения на диоде VD4). На рис. 95 (эпюра 3) это напряжение показано штриховой линией.

На компараторе DA2 происходит сравнение пилообразного напряжения и положительного напряжения, снимаемого с выхода микросхемы DA3.


На выходе компаратора формируются прямоугольные импульсы (рис. 95, эпюра 5). Нагрузкой компаратора являются резистор R5 и обмотка I трансформатора Т2. Диод VD3 защищает выход компаратора от всплесков напряжения, возникающих на обмотке I при переключении компаратора. Сигнал с обмотки II трансформатора Т2 подается на управляющий переход симистора VS1, в цепь которого включается нагрузка - нагреватель.

После включения устройства в сеть сопротивление датчика температуры R11 максимально, поскольку температура среды, в которую помещен датчик, минимальна. Следовательно, на неинвертирующий вход микросхемы DАЗ подано меньшее напряжение, чем на инвертирующий вход. На выходе операционного усилителя напряжение близко к нулю (поскольку это напряжение не может быть равно нулю, в цепь генератора пилообразного напряжения включен компенсирующий диод VD4; это позволяет открывать симистор VS1 в самом начале полупериода).

Таким образом, в начале каждого полупериода симистор будет открываться, подавая энергию в нагрузку. Мощность ее при этом максимальна. По мере повышения температуры среды сопротивление терморезистора R 11 уменьшается, а напряжение на неинвертирующем входе операционного усилителя DA3 увеличивается. Как только это напряжение превысит напряжение на выводе 4 микросхемы DA3, начнет увеличиваться выходное напряжение ОУ. При этом изменяется скважность выходных импульсов компаратора DA2 (рис. 95, эпюра 5) и уменьшается мощность нагрузки. В установившемся режиме средняя мощность нагревателя будет достаточной для поддержания требуемой температуры, заданной положением движка переменного резистора R9.

Поскольку в отличие от описанного выше устройства здесь не происходит полное отключение нагрузки, точность поддержания температуры терморегулятором выше.

Микросхему КР142ЕН8Б (DA1) можно заменить стабилизатором, собранным по любой из известных схем и обеспечивающим напряжение 10...12 В при токе не менее 150 мА. Компаратор К554САЗ (DA2) можно заменить на К521САЗ: операционный усилитель К553УД2 (DA3) - на К153УД2, К140УД7.


Транзисторы VT1, VT2- любые из серий КТ312, КТ315, КТ503, КТ3117. Выпрямительный мост VD1 - любой из серий КЦ402, КЦ405, КЦ407, диоды VD2-VD4 - КД509, КД510, Д220, Д223 с любыми буквами. Конденсатор С1 - типа К50-16, К50-6, С2, СЗ - КМ-6, КЛС, К10-23, С5 - КТ-1, КТ-2, К10-7В. Терморезистор R11 - КМТ, ММТ, СТ1, остальные резисторы - МЛТ. Тринистор КУ208Г можно заменить двумя тиристорами, включенными встречно-параллельно - так, как это сделано, например, в регуляторе мощности (см. рис. 68). Трансформатор МИТ-4 (Т2) можно заменить на МИТ-10, МИТ-12. Данные самодельного трансформатора: кольцевой магнитопровод М2000НМ, типоразмер К20 х 10 х 6; все обмотки (две или три) выполнены проводом ПЭВ-2 0,31 и содержат по 40-50 витков. Начала обмоток на схеме обозначены точками.

Устройство, собранное из исправных деталей, начинает работать сразу. Для изменения пределов регулирования температуры следует подобрать сопротивления резисторов R8, R10, R14. При необходимости можно попробовать увеличить точность регулирования увеличением коэффициента усиления усилителя. Для этого сопротивления резисторов R15, R16 можно увеличить до 75...100 кОм.

Если не требуется высокая точность поддержания температуры. то усилитель на базе ОУ DA3 можно исключить. В этом случае резистор R8 заменяют терморезистором, а сигнал с движка переменного резистора подают на левый (по схеме) вывод резистора R6. Элементы R11-R16. С5, DA3 при этом не потребуются.


Реле выдержки времени


Реле выдержки времени применяют для включения на какое-то определенное время нагрузки, например лампы фотоувеличителя, электроплитки и др.

Простое реле времени, рассчитанное на включение нагрузки на несколько десятков секунд, можно собрать по схеме рис. 49.

В реле времени использован однопереходный транзистор VT1. Что он представляет собой?


(изображена схема только одного канала, остальные-аналогичные). Сопротивления резисторов R21-R24 (см. рис. 42) в этом случае необходимо увеличить до 1...3 кОм. Транзисторы КТ605А можно заменить на КТ605Б, КТ940А, диодные мосты VD6 могут быть КЦ402, КЦ405 с буквами А, Б, Ж, И.

Второй вариант симисторного узла коммутации представлен на рис. 46. Его отличие от предыдущего в том, что транзисторные ключи VT2-VT5 с резисторами R21-R24 (см. рис. 42) заменены инвертирующими логическими элементами микросхемы DD7 (резисторы R17-R20 в схеме рис. 42 при этом сохраняются). Такое схемное решение несколько упрощает конструкцию.

Узел управления симисторами можно сделать еще более простым, если использовать электромагнитные реле (рис. 47). Обмотки реле, как видно из схемы, включены вместо резисторов R21-R24. В переключателе могут работать любые реле, срабатывающие от напряжения 8...12 В при токе до 100 мА, например РЭС-10 (паспорта РС4.524.303, РС4.524.312), РЭС-15 (паспорта РС4.591.003, РС4.591.004, РС4.591.006), РЭС-47 (паспорта РФ4.500.049, РФ4.500.419), РЭС-49 (паспорт РС4.569.424). Кроме простого схемного решения имеется еще одно преимущество - гальваническая развязка низковольтной части устройства от сети питания, что увеличивает безопасность пользования переключателем. Недостатком же является меньший срок службы, вызванный износом контактов реле.

И в заключение еще одна рекомендация. При выключении напряжения сети питания (даже кратковременном - несколько



Однопереходный транзистор имеет три вывода: две базы и один эмиттер. Вывод, соединенный с реле К2, называют выводом первой базы, а вывод, соединенный с резистором R5, - выводом второй базы.
Эмиттер и база Б1 образуют единственный в транзисторе р-п переход, отсюда и название прибора.

Участок между базами образован кремниевой пластиной n-типа и имеет линейную вольт-амперную характеристику, т. е. ток через этот участок прямо пропорционален приложенному межбазовому напряжению. При отсутствии напряжения на эмиттере (измеренного относительно базы Б1) р-п переход находится в закрытом состоянии. При подаче определенного положительного напряжения на эмиттер переход включается в прямом направлении. Соответствующее напряжение эмиттера называют напряжением включения. Сопротивление р-п перехода при включении уменьшается в сотни раз, а ток становится достаточным для включения, например, в нашем случае электромагнитного реле К2. При уменьшении эмиттерного напряжения переход возвращается в закрытое состояние. Процесс переключения однопереходного транзистора носит лавинообразный характер (т. е. сопротивление перехода изменяется скачком), что и позволяет широко использовать однопереходный транзистор в различных устройствах.

Итак, познакомившись с принципом работы однопереходного транзистора, рассмотрим работу реле времени (см. рис. 49). В исходном состоянии все элементы устройства, кроме элементов, генератора и выпрямителя, обесточены. Напряжение сети выпрямляется однополупериодным выпрямителем (диод VD1), стабилизируется параметрическим стабилизатором напряжения R1VD2VD3VD4, пульсации сглаживаются конденсатором С1. Гене-

ратор, собранный на однопереходном транзисторе VT2, вырабатывает колебания звуковой частоты, которые излучаются капсюлем НА1. При нажатии на кнопку SB1 "Пуск" срабатывает электромагнитное реле К1. Контактами К 1.1 оно самоблокируется и размыкает конденсатор С2; контактами К 1.2 подает напряжение па элементы устройства; контактами К1.3 отключает узел подачи звукового сигнала. Через резисторы R3 и R4 начинается зарядка конденсатора С2. Через некоторое время (определяемое значениями R3, R4 и С2) переход транзистора VT1 откроется и конденсатор С2 разрядится на обмотку реле К2 - оно кратковременно сработает.


Контактами К2. 1 реле разорвет цепь питания реле К1, и устройство примет первоначальное состояние.

Однопереходные транзисторы могут быть типов КТ117А, КТ117Б. При отсутствии однопереходного транзистора его можно



заменить комбинацией из двух биполярных транзисторов (рис. 50). Реле К1 (в схеме рис. 49) применено типа МКУ-48 (паспорт РА4.509.145); реле К2 - типа РЭС-15 (паспорт РС4.591.004) или РЭС-10 (паспорт РС4.524.302). Конденсатор С2 желательно применить с малым током утечки (типов К53-1, К53-4, К53-14). Звуковой излучатель НА1 - микрофонный капсюль ДЭМШ-1А или любой другой телефон с обмоткой сопротивлением постоянному току 100...200 Ом. Выбор остальных деталей не вызовет затруднений. Заканчивая описание реле

времени на однопереходном транзисторе, заметим, что на выдержках времени более 1 мин стабильность выдержки уменьшается.

Действие цифрового реле времени (первый вариант), схема которого приведена на рис. 51, основано на заполнении двоичного счетчика импульсами, следующими с периодом 1 с или 1 мин. После того как на вход счетчика поступает определенное число импульсов, появляется сигнал на выходе узла совпадения и срабатывает исполнительное реле.

Прибор имеет два поддиапазона выдержек времени. В первом поддиапазоне длительность выдержки можно устанавливать в пределах 1...255 с с интервалом 1 с, во втором - в пределах 1...255 мин с интервалом 1 мин. Установка того или иного поддиапазона осуществляется переключателем SA1.

С обмотки II трансформатора Т1 напряжение сети, пониженное до 10 В, выпрямляется диодным мостом VD1 и через резистивный



делитель R2R3 поступает на вход триггера Шмитта (выводы 1, 2, 4, 5 микросхемы DD1).

Триггером Шмитта называют пороговое электронное устройство, выходное напряжение которого может принимать одно из двух значений (высокий или низкий уровень) под воздействием аналогового или цифрового входного сигнала. Триггер Шмитта представляет собой усилитель, охваченный положительной обратной связью. Графическое изображение взаимосвязи между входным и выходным сигналами триггера Шмитта называют его передаточной характеристикой (рис. 52,а).


Если входное напряжение триггера Uвx = 0 (точка А), то выходное напряжения Uвых > 2,4 В (напряжение высокого уровня ТТЛ). При повышении Uвx до 1,7 В выходное напряжение скачкообразно уменьшается (переходит от точки Б к В, где Uвых<=0.4В, т. е. напряжение низкого уровня). Такое входное напряжение называют напряжением срабатывания Ucpaб. Если входное напряжение теперь постепенно уменьшать (от точки Г к В и ниже), то при Uвx=0,9 В выходное напряжение скачкообразно изменится от низкого уровня к высокому (линия Д-Е). Это входное напряжение называют напряжением отпускания Uотп. Разницу между напряжениями срабатывания и отпускания называют гистерезисом триггера; Uг=0,8 В. Рассмотренный триггер Шмитта, входящий в состав микросхемы К155ТЛ1, инвертирует входной сигнал. Временная диаграмма работы при воздействии входного синусоидального сигнала показана на рис. 52,6. Таким образом, триггер Шмитта формирует из входного сигнала произвольной формы прямоугольные импульсы с крутыми фронтами.

С выхода триггера Шмитта прямоугольные импульсы частотой 100 Гц подаются на два последовательно соединенных десятичных счетчика DD2, DD3. В результате на выходе микросхемы DD3



(вывод 5) импульсы следуют с периодом 1 с. Они поступают на входы &С десятичного счетчика DD4, а от него - на микросхему DD5, которая делит частоту поступающих импульсов на шесть (микросхемы DD2-DD5 работают в режиме счета импульсов лишь в том случае, если на их входах &RO имеется напряжение низкого уровня). На выходе микросхемы DD5 (вывод 8) импульсы следуют с периодом 1 мин.

С подвижного контакта переключателя SA1 "Мин-с" импульсы поступают на вход четырехразрядного двоично-десятичного счетчика DD6, а с выхода последнего - на вход такого же счетчика DD7. Напомним, что общая емкость N-разрядного счетчика составляет 2^N-1, следовательно, в данном случае в счетчик может быть записано максимальное десятичное число 255. Это и определяет максимальную продолжительность выдержки реле времени - 255 мин.



Триггеры, входящие в состав микросхемы К155ИЕ5, переключаются спадом импульса.

Выходы счетчиков DD6, DD7 через замыкающие контакты кнопочных выключателей SB1-SB8 соединены со входами микросхемы DD8, выполняющей логическую операцию 8И-НЕ. Когда восьмиразрядный счетчик достигнет определенного состояния, заданного выключателями SB1-SB8, на выходе микросхемы DD8 появится напряжение низкого уровня. При этом RS-триггер, выполненный на логических элементах DD9.1 и DD9.2, установится в состояние, при котором на выходе логического элемента DD9.2 напряжение низкого уровня (а в течение отсчета времени было напряжение высокого уровня), отпустит электромагнитное реле К1, а его контакты К1.1 отключат (или включат) цепь нагрузки.

Пользоваться этим реле времени несложно. После включения питания выключателем Q1 RS-триггер установится в состояние, соответствующее напряжению низкого уровня на выходе элемента DD9.2 (для установки триггера в такое состояние служит конденсатор С5). Реле К1 при этом обесточено. На входах &RO микросхем DD2-DD7 будет напряжение высокого уровня, запрещающее счет импульсов. Затем переключателем SA1 устанавливают поддиапазон выдержек - "Секунды" или "Минуты", а кнопочными выключателями SB1-SB8 - нужную длительность выдержки времени. Например, при нажатии кнопок SB5 и SB7 и установке переключателя SA1 в положение "Минуты" выдержка времени составит 16+64=80 мин.

Затем нажимают кнопку SB 10 "Пуск". При этом на выходе элемента DD9.2 установится напряжение высокого уровня и сработает реле К1, на выходе элемента DD9.3 - напряжение низкого уровня, которое будет подано на входы &RO микросхем DD2-DD7 начнется подсчет поступающих импульсов. Через 80 мин RS-триггер

DD9.1DD9.2 переключится в противоположное состояние, и реле К1 отпустит.

Микросхемы DD1-DD10 можно заменить на аналогичные им микросхемы из серий К 133, КР531, К555. При отсутствии интегрального стабилизатора КР142ЕН5А (DA1) стабилизатор может быть выполнен по любой известной схеме (например, параметрический стабилизатор с эмиттерным повторителем); он должен обеспечивать выходное напряжение 5 В при токе не менее 200 мА.


Транзистор VT1 - типов КТ312, КТ315, КТ503, КТ603, КТ608, КТ3117 с любым буквенным индексом. Мостовой выпрямитель VD1 может быть из серий КЦ402, КЦ405, КЦ407 с любыми буквами; диод VD2 - Д226, Д310, КД105, КД106 с любыми буквами, VD3 - КД503, КД509, КД510, Д220, Д223 с любыми буквами. Оксидные конденсаторы -типов К50-6, К50-16; остальные - КМ-6, КЛС, К10-7в. Резисторы -типа МЛТ-0,25; реле К1 - типа РЭС-22 (паспорт РФ4.500.129). Выключатель Q1 и переключатель SA1 - типов ТВ2-1-2 или ТП1-2, переключатели SB1-SB8 - П2К с фиксацией положения, SB9 и SB 10 -П2К без фиксации положения. Трансформатор Т1 - любого типа, обеспечивающий напряжение на вторичной обмотке 8...12 В при токе не менее 0,3 А. Данные самодельного трансформатора: магнитопровод ШЛ 16х25; обмотка I содержит 2400 витков провода ПЭВ-2 0,1 мм, обмотка II -120 витков провода ПЭВ-2 0,33 мм.

Реле времени смонтировано в пластмассовом корпусе размерами 250х210х90 мм (использован корпус от неисправного ампервольтомметра АВО-5М) (рис. 53). Верхняя съемная крышка изготовлена из текстолита толщиной Змм. Надписи выполнены на бумаге и закрыты сверху пластинами прозрачного органического стекла. На боковой



стенке находится соединитель, к которому подведены провода, идущие от контактов К 1.1 реле К1.

Большая часть деталей смонтирована на плате № 2 (см. рис. 16,6). Монтаж - проволочный. Микросхема DA1 установлена на дюралюминиевом уголке 20 х 20 мм, служащем радиатором.

Чтобы исключить возможные сбои из-за помех, не следует объединять в один жгут провода, идущие к микросхемам, с проводами, несущими

переменный или пульсирующий ток (от сетевого трансформатора Т1 и выпрямителя VD1).

Правильно собранное из заведомо исправных деталей реле времени не требует налаживания. Оценить его точности можно путем сравнения длительностей выдержек с показаниями электронных часов. В одном из испытанных экземпляров устройства максимальное отклонение выдержки на пределе 30 мин составило не более 20 с, что соответствует точности 1%.

Для уменьшения обгорания контакты К 1.1 образованы четырьмя параллельно соединенными группами контактов, имеющимися в реле.


Желательно также параллельно контактам подключать искрогасящие цепи (последовательно соединенные резистор сопротивлением 100...200 Ом, мощностью 2 Вт и конденсатор емкостью 0,25...0,5 мкФ на номинальное напряжение 400 В). Такой вариант реле выдержки времени, можно применять при выполнении фоторабот, для включения и запрограммированного выключения различных бытовых приборов (например, электроплитки). Если увеличить диапазоны выдержек включением в счетчик импульсов дополнительных триггеров и ввести звуковую сигнализацию, то реле времени можно будет использовать и как электронный будильник.

Схема второго варианта цифрового реле времени представлена на рис. 54. Действие этого устройства, как и предыдущего варианта реле времени, основано на заполнении двоичных счетчиков импульсами, следующими с периодом 1, 10 с, 1 или 10 мин. Реле времени обеспечивает выдержку времени от 1 с до 990 мин в четырех поддиапазонах (1...99 с с интервалом 1 с; 10...990с с интервалом 10с; 1...99 мин с интервалом 1 мин; 10...990 мин с интервалом 10 мин). Отличительной особенностью такого реле времени является малый ток потребления (в режиме выдержки времени он составляет около 1 мА), что позволило питать реле времени от гальванической батареи и потому использовать его в тех местах, где нет электросети. Реле времени может включать и выключать бытовые электроприборы мощностью до 1000 Вт, а также подает звуковой сигнал.

В реле времени использован кварцевый резонатор, что обеспечивает высокую стабильность временных интервалов (не хуже 0,001%). Наличие всех перечисленных факторов позволяет широко использовать это устройство в быту.

Устройство выполнено на шести микросхемах серии К176. Эта серия по сравнению с серией К 155 обладает не только тем преимуществом, что ее микросхемы потребляют малую мощность, но и тем, что они имеют и более высокую степень интеграции.



Микросхема К176ИЕ12 (DD1), разработанная для использования в электронных часах, имеет очень широкие функциональные возможности. В ее состав входят генератор, рассчитанный на работу с внешним кварцевым резонатором на частоту 32 768 Гц (выводы 12 и 13), и два делителя частоты с коэффициентами деления 2^15= 32768 и 60 (выводы 4, 7, 10).


Следовательно, на выходах микросхемы формируются секундные и минутные импульсы. Микросхема позволяет реализовывать и некоторые другие функции, связанные с ее применением в электронных часах. В исходное состояние микросхему устанавливают подачей напряжения высокого уровня на входы R (выводы 5, 9).

Эпюры напряжений на некоторых выводах микросхемы К176ИЕ12 представлены на рис. 55. Особенность микросхемы



К176ИЕ12 в том, что первый спад на выходе минутных импульсов М появляется спустя 59 с после подачи напряжения низкого уровня на вход сброса R. Это следует учитывать при эксплуатации устройств, собранных на микросхеме. .

Микросхема К176ИЕ8 (DD4-DD6) - это двоичный счетчик, совмещенный с десятичным дешифратором. Имеет вход R для установки в исходное состояние и входы для подачи счетных импульсов отрицательной (CN) и положительной (СР) полярностей. При работе счетчика на его выходах 0-9 (выводы 1-7, 9-11) последовательно появляется напряжение высокого уровня.

Рассмотрим работу реле времени (контакты выключателя питания SA5 замкнуты). Выбор нужной выдержки времени осуществляют переклю

чателями SA1 ("Минуты" - "Секунды"), SA2 ("х1" - "х10"), SA3, SA4 ("Единицы", "Десятки"). После этого замыкают контакты выключателя SA6 "Пуск". При этом на выводах 10, 4, 11 микросхемы DD1 появляются импульсы с частотами соответственно 1/60,

1 и 1024 Гц. В зависимости от положения переключателя SA1 на выводы 2, 8 логического элемента DD3.2 поступают минутные или секундные импульсы. На выводе 1 этого же элемента - напряжение высокого уровня, поданное с выхода логического элемента DD3.3 (поскольку на его входах - выводах 11, 12, 13 - напряжение низкого уровня). Следовательно, импульсы поступают на вход СР микросхемы DD4, и если контакты переключателя SA2 находятся в показанном на схеме положении - то и на аналогичный вход микросхемы DD5.

Логический элемент DD2.1 инвертирует секундные импульсы, поступающие на нормально замкнутый контакт переключателя SA1.


Это сделано для того, чтобы на выводы 2, 8 логического элемента DD3.2 поступали или секундные, или минутные импульсы, у которых период относительно исходного состояния входа R определяется спадом импульса (или, что то же самое, срезом импульса). На вход СР микросхемы DD4 импульсы поступают в противофазе благодаря применению логического элемента DD3.2, т.е. секундный или минутный интервал определяется положительным перепадом напряжения на входе СР, переключающим триггеры микросхемы.

Через некоторое время, определяемое положением подвижных контактов переключателей SA3 и SA4, на этих контактах появятся одновременно напряжения высокого уровня. Напряжение низкого уровня, появившееся на выходе логического элемента DD3.3, запретит дальнейшее поступление импульсов на входы микросхем DD4, DD5 и откроет транзистор VT2. На вывод 5 логического элемента DD3.1 поступит напряжение высокого уровня. На базу транзистора VT1 начнут поступать импульсы с интервалом 1 с, модулированные частотой 1024 Гц (роль модулятора, или суммирующего устройства, выполняет логический элемент DD3.1). В излучателе НА1 будет слышен прерывистый звуковой сигнал, свидетельствующий об окончании выдержки времени.

Микросхему К176ЛА7 (DD2) можно заменить на К561ЛА7, К176ЛА9 (DD3) - на К561ЛА9, К176ИЕ8 (DD4-DD6) - на К561ИЕ8. Транзисторы VT1, VT2 - любые из серий КТ203, КТ361, КТ501, КТ502. Кварцевый резонатор Z1 - малогабаритный на частоту 32768 Гц, предназначенный для использования в электронных часах. Конденсаторы Cl, C2 - типов КЛС, КМ, КТ, К10-7в. К10-23. Резисторы - МЛТ-0,25. Звуковой излучатель - микрофонный капсюль ДЭМШ-1А или телефонный капсюль любого типа с сопротивлением катушки постоянному току не менее 65 Ом (например, ТА-4, ТК-47, ТК-67). Переключатели SA1, SA2, SA5, SA6 - типа П1Т; SA3, SA4 - МПН-1. В качестве батареи питания GB1 использованы четыре дисковых аккумулятора Д-0,06.



Реле времени собрано в пластмассовом корпусе размерами 120х70х20 мм (рис. 56). Корпус изготовлен из коробки для рыболовных принадлежностей.


Расположение элементов в корпусе реле времени показано на рис. 57. Монтаж на плате выполнен проводами.

Такое реле времени, свободно умещающееся в кармане, удобно использовать в качестве таймера или будильника. Несложная приставка к реле времени (рис. 58) позволяет с его помощью управлять нагрузкой. Переключателем SA1 выбирают режим коммутации нагрузки. В положении 1 управление нагрузкой не осуществляется, и цепи узла управления нагрузкой (оптроны Ul, U2) отключены от коллектора транзистора VT1; это сделано для того, чтобы не расходовать напрасно энергию батареи GB1 на питание



узла управления, если нагрузка отключена, а реле времени используется только в качестве будильника. По истечении заданного времени в положении 2 переключателя SA1 реле времени включает нагрузку, а в положении 3 - выключает нагрузку (в течение заданного времени она включена).

Коммутация нагрузки осуществляется тиристором VS1, включенным в диагональ диодного моста VD1-VD4. Тиристор включается с помощью двух оптронов U1 и U2. Оптрон работает следующим образом. При протекании тока через светодиод оптрона освещается его динистор, и он начинает пропускать ток. Достоинством оптрона является отсутствие гальванической связи между его входными и выходными цепями, что создает безопасные условия работы с устройствами, имеющими питание от сети (сопротивление между входными и выходными цепями оптрона достигает сотен мегаом).

Допустим, что переключатель SA1 установлен в положение 2. При появлении напряжения низкого уровня на выходе логического элемента DD3.3 транзистор VT2 реле времени (рис. 54) откроется, также откроется и транзистор VT1 узла управления, и через светодиоды оптронов U1 и U2 потечет ток, ограничиваемый резистором R2. Динисторы оптронов откроются, поэтому в начале каждого полупериода напряжения сети будет открываться тринистор VS1 и оставаться открытым до конца, полупериода. Использование двух оптронов объясняется тем, что допустимое прямое напряжение динистора оптрона этого типа составляет лишь 200 В.


Резисторы R3 и R4 предназначены для выравнивания напряжений на динисторах. когда они находятся в закрытом состоянии.

Если переключатель SA1 находится в положении 3, то входные цепи оптронов будут подключены к плюсу питания и транзистору VT1, который по истечении выдержки времени закроется и выключит оптроны и нагрузку. Поскольку ток, протекающий через входные цепи оптрона, довольно значителен (10...20 мА), при установке больших выдержек времени батарея GB1 может сильно разрядиться. Это необходимо учитывать при работе с устройством.

По истечении выдержки времени контакты переключателя SA5 следует возвратить в исходное положение, при этом устройство примет первоначальное состояние.

Нагрузка, которую может коммутировать реле времени, питается переменным током. Это может быть холодильник, телевизор. радиоприемник, вентилятор и пр. Если же питание нагрузки допускается осуществлять постоянным током (фотоувеличитель. утюг, электроплитка), то узел управления можно упростить и избежать применения оптронов (рис. 59). Этот узел будет производить отключение нагрузки по истечении заданного времени. Мощ



ность, рассеиваемая на транзисторе VT2, очень мала, поскольку ток через него протекает лишь в момент открывания. Однако в этом случае элементы реле времени будут иметь гальваническую связь с сетью и необходимо соблюдать меры безопасности при работе с устройством.

Конструкция узла управления нагрузкой, его размеры определяются тем, какие нагрузки предполагается коммутировать. Если их мощность не превышает 300 Вт, то выпрямительные диоды и тринистор не нужно устанавливать на радиатор. Если же мощность нагрузки может достигать 1000 Вт, то тринистор следует устанавливать на радиатор с поверхностью теплоотдачи не менее 200 см^2, а каждый из диодов - на радиатор с поверхностью 50 см^2.

Напоминаем: микросхемы потребляют от батареи ток около 1 мА; устройство подачи звукового сигнала - не более 10 мА;

оптроны, когда они включены, - 10...20 мА. Исходя из этих данных и зная емкость батареи питания, следует рассчитать продолжительность работы реле времени в том или ином режиме.



Большие возможности для построения времязадающих устройств открывает использование интегрального таймера КР1006ВИ1. Эта микросхема специально разработана для применения в устройствах подобного типа.

Функциональная схема интегрального таймера КР1006ВИ1 представлена на рис. 60. В состав таймера входят два прецизионных компаратора высокого (DA1) и низкого (DA2) уровней, асинхронный RS-триггер DD1, мощный выходной каскад на транзисторах VT1 и VT2, разрядный транзистор VT3, прецизионный делитель напряжения R1R2R3. Сопротивления резисторов R1-R3 равны между собой.

Таймер содержит два основных входа: вход запуска (вывод 2) и пороговый вход (вывод 6). На этих входах происходит сравнение внешних напряжений с эталонными значениями, составляющими для указанных входов соответственно l/3Uпит и 2/3Uпит. Если на входе Unop действует напряжение меньше 2/3Uпит, то уменьшение напряжения на входе Uзап до значения, меньшего 1/3Uпит, приведет к установке таймера в состояние, когда на выходе (вывод 3) имеется



напряжение высокого уровня. При этом последующее повышение напряжения на входе Uзап до значения 1/3Uпит и выше не изменит состояния таймера. Если затем повысить напряжение на выходе Uпop до значения больше 2/3 Uпит, то сработает триггер DD1 и на выходе таймера установится напряжение низкого уровня, которое будет сохраняться при любых последующих изменениях напряжения на входе Uпop. Этот режим работы таймера обычно используют при построении реле времени, ждущих мультивибраторов. При этом вход Unop подключают к одной из обкладок конденсатора времязадающей цепи, а по входу Uзап производят запуск таймера подачей короткого импульса отрицательной полярности. Если необходимо создать автоколебательный мультивибратор, то оба входа объединяют. Транзистор VT3 служит для разрядки времязадающего конденсатора. При появлении напряжения высокого уровня на выводе 3 таймера этот транзистор открывается и соединяет обкладку конденсатора с общим проводом.

Если на запускающем входе напряжение не превышает l/3Uпит, то повышение напряжения на входе Unop выше 2/ЗUпит приведет к появлению низкого напряжения на выходе таймера, а понижение напряжения на этом входе ниже 2/ЗUпит установит высокое напряжение на выходе.


Таким образом, в данном случае таймер работает как обычный компаратор и может быть использован в устройствах регулирования температуры, автоматического включения освещения и др.

Если на входе Unop напряжение превышает 2/3Uпит, то на выходе таймера будет низкое напряжение независимо от значения напряжения на входе Uзап. В заключение следует отметить, что напряжение питания таймера может находиться в пределах 5...15 В. Максималь

ный выходной ток таймера равен 100 мА. Это позволяет использовать в качестве нагрузки электромагнитное реле. Вывод 5 служит для контроля значения образцового напряжения, а также для возможного изменения его значения путем подключения внешних резисторов. Для уменьшения возможного действия помех этот вход обычно соединяют с общим проводом через конденсатор емкостью 0,01...0,1 мкФ. Вход Uc6p (вывод 4) позволяет устанавливать на выходе низкое напряжение независимо от сигналов на остальных входах. Для этого на вывод 4 следует подать напряжение низкого уровня. Последующее повышение напряжения на этом входе до напряжения высокого уровня приводит к установлению на выходе таймера состояния, которое было до подачи низкого напряжения на вход 4 (имеется в виду, что времязадающая цепь не подключена). Если этот вход не используется, его следует соединить с выводом 8. В схемах реле времени вход Uсбр часто используют для установки таймера в исходное состояние, соответствующее закрытому транзистору VT3.

На рис. 61 представлена схема реле времени с использованием интегрального таймера. После подачи питания на устройство на выводе 2 установится высокое напряжение, а на выводе 6 - низкое (поскольку конденсатор С2 разряжен). На выходе таймера (вывод 3) при этом будет также низкое напряжение, через обмотку реле К1 течет ток, и разрядный транзистор таймера открыт - конденсатор С2 не может заряжаться. В таком состоянии таймер может находиться сколь угодно долго. Отсчет времени начинается с момента нажатия кнопки SB1 "Пуск". Поступающий при этом на вывод 2 отрицательный перепад напряжения переключает внутренний триггер таймера в противоположное состояние, на выводе 3 появляется напряжение





высокого уровня, реле К1 отпускает, а разрядный транзистор таймера закрывается. Начинается зарядка конденсатора С2 через резистор R3. Когда напряжение на конденсаторе достигнет порога переключения компаратора высокого уровня (в данном случае оно равно 2/3 х 15 В = 10 В), на выводе 3 опять установится напряжение низкого уровня, реле К1 сработает, а конденсатор С2 разрядится через внутренний транзистор таймера. Длительность выдержки времени Т можно определить из соотношения T=1,1R3C2, при этом время выражено в секундах, емкость - в микрофарадах, сопротивление - в мегаомах. Сопротивление времязадающего резистора не должно превышать 10 МОм. Емкость ограничивается лишь сопротивлением утечки, значение которого должно превышать значение сопротивления времязадающего резистора по крайней мере на порядок (т.е. в 10 раз). Желательно применять конденсаторы типов К73-17, К76-П2,, К53-1, ЭТО, обладающие малыми потерями.

Стабильность выдержки времени определяется в основном стабильностью конденсатора и резистора времязадающей цепи. Стабильность же собственно таймера весьма высокая. Это связано с тем, что изменение температуры в одинаковой степени влияет на сопротивление всех трех резисторов делителя напряжения, которые выполнены на одном кристалле. Изменение напряжения питания также не влияет на время выдержки, поскольку одновременно изменяются и порог срабатывания компаратора, и зарядный ток через конденсатор.

Реле К1 следует выбирать исходя из напряжения питания таймера и тока срабатывания не более 100 мА. Подойдут реле РЭС-10 (паспорт РС4.524.302), РЭС-9 (паспорт РС4.524.200).

В данном реле времени не предусмотрена регулировка выдержки времени". Казалось бы, сделать это несложно - достаточно резистор R3 заменить переменным. Однако промышленность выпускает переменные резисторы с номиналом не более 5 МОм. Выход из этого положения можно найти, если регулировать напряжение питания времязадающей цепи. Фрагмент схемы, обеспечивающей такую возможность, показан на рис. 62.


Отношение сопротивлений резисторов R4 и R5 выбрано таким образом, чтобы напряжение на движке переменного резистора изменялось от значения, немного большего 2/3Uпит, до Uпит. Для расширения диапазона выдержек можно изменять емкость времязадающего конденсатора использованием галетного переключателя и батареи конденсаторов.

Стабильность формируемых выдержек данным реле времени достаточно высокая. В экспериментальном экземпляре на диапазоне 5 мин она составляла около ±0,5°/о, на диапазоне 30 мин - около

±2%. Дальнейшее увеличение выдержки времени приводит к значительному ухудшению ее стабильности и, следовательно, нежелательно. Поэтому для обеспечения больших выдержек времени (более 30 мин) следует идти по пути использования цифровых делителей частоты, а таймер использовать в качестве задающего генератора.

Принципиальная схема такого реле времени показана на рис. 63. На микросхеме DA1 выполнен мультивибратор, вырабатывающий задающие импульсы стабильной частоты 1 Гц или 1/60 Гц; на микросхеме DD1 - двоичный счетчик с коэффициентом деления 128;

на микросхеме DD2 - генератор звуковой частоты.

Выбор диапазона выдержки времени (секунды или минуты) производится переключателем SB2, установка времени выдержки-выключателями SA1-SA8. С их помощью можно набрать любое число от 1 до 255. Таким образом, наибольшая выдержка составляет 255 мин.





Прежде чем рассмотреть работу реле времени, познакомимся с особенностями микросхемы К561ИЕ10. Она состоит из двух одинаковых четырехразрядных счетчиков-делителей, связанных только общим питанием. Каждый счетчик имеет два счетных входа СР и CN, вход R принудительной установки нулей на выходах и выходы от каждого из четырех разрядов (рис. 64,а).

Когда на входе CN имеется напряжение низкого уровня либо на входе СР напряжение высокого уровня, входные импульсы, поданные на второй вход, не изменяют состояния счетчика. Для обеспечения режима счета необходимо на вход CN подать разрешающее напряжение высокого уровня (при этом входные импульсы поступают на вход СР) либо поддерживать напряжение низкого уровня на входе СР, а входные импульсы подавать на вход CN.


Когда счет импульсов производится по входу СР, переключение первого триггера счетчика происходит по фронту счетных импульсов, при счете по входу CN - по спаду счетных импульсов (рис. 64,6). Остальные разряды счетчика переключаются по спаду импульсов выходных сигналов предыдущих разрядов. Максимальная частота счета 20 МГц.

Рассмотрим работу реле времени (рис. 63). Для запуска устройства нажимают кнопочный выключатель с фиксацией положения SB1. Начинает работать мультивибратор, на входы R подается

сигнал разрешения счета и счетчики DD1.1, DD1.2 заполняются импульсами. Допустим, что установлена выдержка времени 22 с. Это достигается замыканием контактов выключателей SA2, SA3, SA5 (2+4+ 16=22). Поскольку в исходном состоянии счетчиков на всех их выходах низкое напряжение, диоды VD1-VD8 открыты, а транзисторы VT1, VT2 закрыты, реле К1 обесточено. Диоды VD1-VD8 реализуют операцию логического сложения, т. е. транзистор VT1 откроется тогда, и только тогда, когда на выводах 4, 5, 11 микросхемы DD1 установится напряжение высокого уровня. При этом сработает реле К1, контактами К 1.1 самоблокируется и одновременно отключит базу транзистора VT2 от общего провода. В звуковом излучателе НА1 будет слышен сигнал, свидетельствующий об окончании выдержки времени. Громкость сигнала регулируется переменным резистором R7.

Следует заметить, что в счетчике DD1.1 счетные импульсы подаются на вход СР, а в счетчике DD1.2 - на вход CN.

В исходное состояние устройство возвращают переключением контактов SB1 в первоначальное положение.

Несколько слов о назначении делителя напряжения R1R2. Как следует из логики работы интегрального таймера КР1006ВИ1, в процессе работы мультивибратора напряжение на времязадающем конденсаторе С2 изменяется в пределах 1/3... 2/3 напряжения питания, т.е. от 5 до 10 В. Поэтому в исходном состоянии конденсатор С2 должен быть заряжен до одного из этих напряжений, чтобы длительность первого сформированного мультивибратором импульса не отличалась от длительности последующих.


В данном случае конденсатор заряжается до напряжения 5 В, которое подается на конденсатор С2 с делителя R1R2 через замкнутые контакты переключателя SB 1.1.

В устройстве использованы постоянные резисторы МЛТ-0,25. Переменный резистор R7 - СП-0,4, СП-1 или любой другой. Конденсатор С2 - типа К53-1, К53-4, ЭТО; главное требование -чтобы он обладал малым током утечки и высокой стабильностью емкости при изменении температуры. Конденсаторы С1, СЗ - типа КМ-66, КЛС. Транзисторы VT1, VT2 - любые из серий КТ312, КТ315, КТ503, КТ603, КТ608, КТ3117. Диоды VD1-VD8 - любые из серий Д9, Д311. Они обязательно должны быть германиевыми, поскольку только германиевый переход характеризуется малым прямым падением напряжения: 0,3...0,5 В. Это обеспечивает надежное закрывание кремниевого транзистора VT1. Использование кремниевых диодов недопустимо из-за большого прямого падения напряжения на них (1...1,5 В). Диод VD9 может быть типов Д220, Д223, КД503, КД509. Реле К1 - РЭС-10 (паспорт РС4.524.302) или

РЭС-15 (паспорт РС4.591.004). Звуковой излучатель НА1 - любого типа с сопротивлением обмотки постоянному току 100...200 Ом, например ВП-1, ДЭМШ-1А, ТК-67. Переключатели SB1, SB2 - типа П2К с фиксацией положения; SA1-SA8 - типа П1Т-1.

Налаживание реле времени состоит в подборе напряжения 5 В в точке соединения резисторов R1 и R2 с помощью резистора R1, а также в установлении периода следования импульсов мультивибратора равным 1 с или 1 мин резисторами R3 и R4 соответственно. В макетном экземпляре реле времени максимальная погрешность выдержки времени на пределе 255 мин составила 0,2...0,3%.

Для расширения пределов выдержки времени следует или увеличить период колебаний мультивибратора, или применить дополнительные делители частоты.


Стабилизатор сетевого напряжения


Для стабилизации напряжения питающей сети в бытовых условиях используют в основном феррорезонансные стабилизаторы. К числу их недостатков следует отнести искажение формы

кривой выходного напряжения, невозможность работы без нагрузки. Кроме того, выпускаемые промышленностью феррорезонансные стабилизаторы бытового назначения имеют небольшую мощность (300...400 Вт), которой нередко оказывается недостаточно, например, на садовом участке.

От указанных недостатков свободен стабилизатор напряжения, выполненный на базе регулируемого (лабораторного) автотрансформатора. Такой стабилизатор представляет собой систему автоматического регулирования, в которой часть выходного напряжения сравнивается с установленным образцовым напряжением. В зависимости от знака разности этих напряжений подвижный контакт автотрансформатора с помощью электродвигателя перемещается так, что выходное напряжение приближается к образцовому.

Принципиальная схема стабилизатора напряжения представлена на рис. 96. В качестве автотрансформатора Т1 использован выпускаемый промышленностью автотрансформатор типа АОСН-20-220-75У4. Его обмотки рассчитаны на ток до 20 А, а максимальное напряжение, снимаемое с подвижных контактов, 240 В.

Трансформатор выполнен на стержневом (П-образном) магнитопроводе. Обмотка состоит из двух частей, по каждой из которых скользит графитовый ползунок (В2 и ВЗ). Входное напряжение 220 В подается на контакты-отводы А2 и A3.

Пока контакты выключателя SA1 замкнуты, выходное напряжение с контактов В2 и ВЗ через резистор R1 поступает на диодный мост VD1. Пульсации выпрямленного напряжения сглаживаются конденсатором С1 и с ползунка подстроечного резистора R2 подаются на входы микросхем-компараторов DA1, DA2. На вторые входы компараторов подано образцовое напряжение, снимаемое с параметрического стабилизатора напряжения VD2R3 и с регулируемого делителя напряжения R4R5. Выходные напряжения компараторов через переключатель SA2 и светодиоды HL1, HL2 подаются на светодиоды оптронов Ul, U2.
Динисторы оптронов включены в диагонали диодных мостов VD4. VD5, которые управляют подачей напряжения на обмотки мотора Ml - асинхронного реверсивного электродвигателя с редуктором типа РД-09. Если открыт динистор оптрона Ul, вал двигателя вращается в одну сторону; если же открыт динистор оптрона U2, то вал двигателя вращается в другую сторону.

Обмотки электродвигателя питаются напряжением 127 В, которое снимается с выводов 4 и 10 первичной обмотки трансформатора Т2. Конденсатор С4 обеспечивает необходимый сдвиг фаз между напряжениями на обмотках электродвигателя.

Источником питания компараторов DA1, DA2, параметрического



стабилизатора VD2R3 и делителя напряжения R4R5 служит интегральный стабилизатор, выполненный на микросхеме DA3.

Устройство работает следующим образом. Если выходное напряжение трансформатора Т1 соответствует норме, то напряжение на движке подстроенного резистора R2 будет меньше напряжения на выводе 3 компаратора DA1, но больше напряжения на выводе 4 компаратора DA2, а выходной ток обоих компараторов равен нулю. При этом динисторы обоих оптронов закрыты, ток через обмотки электродвигателя не протекает, и ползунки автотрансформатора Т1 неподвижны.

В случае повышения сетевого напряжения значения напряжения на контактах В2 и ВЗ трансформатора и на резисторе R2 также

увеличатся. В результате напряжение на выводе 4 компаратора DA1 превысит напряжение на выводе 3, и через вывод 9 компаратора потечет ток. Откроется динистор оптрона U2. Состояние компаратора DA2 при этом не изменится. Через диодный мост VD5 и обмотки электродвигателя Ml начнет протекать ток, заставляя вращаться вал. Ползунки будут перемещаться по виткам обмоток трансформатора Т1 в направлении уменьшения выходного напряжения. Через некоторое время напряжение достигнет нормы, компаратор DA1 переключится в исходное состояние, и электродвигатель остановится.

При понижении сетевого напряжения в активном состоянии окажутся компаратор DA2 и оптрон U1, и вал двигателя будет перемещать ползунки В2 и ВЗ в направлении увеличения выходного напряжения.


Таким образом оно будет поддерживаться на заданном уровне.

Диапазон возможных значений выходного напряжения (т.е. точность стабилизации) определяется разницей в уровнях напряжения на выводе 3 микросхемы DA1 и выводе 4 микросхемы DA2 и устанавливается подстроечным резистором R4.

Конденсатор С 1 не только сглаживает пульсации выпрямленного напряжения, но и фильтрует помехи, возникающие при кратковременных изменениях сетевого напряжения. Если продолжительность действия помехи не превышает 1,5... 2 с, устройство на нее не реагирует. Резистор R6 ограничивает ток через динисторы оптронов.

Выключатель SA1, кнопки SB1 и SB2 предназначены для управления электродвигателем в ручном режиме, когда электронный узел устройства отключен,. SF1 и SF2 - это контакты конечных выключателей. Когда ползунки В2 и ВЗ трансформатора Т1 оказываются в крайних положениях (верхнем или нижнем), контакты конечных выключателей размыкаются и отключают двигатель, исключая повреждение механических частей стабилизатора. Такое может случиться, например, при значительном снижении сетевого напряжения, если перемещение ползунков уже не приведет к установлению на выходе номинального значения напряжения. Переключатель SA2 позволяет изменять направление вращения вала двигателя. Такая необходимость может возникать в случае иного, чем на схеме, подключения выводов обмоток трансформатора Т1 либо в случае применения трансформатора Т1 другого типа (об этом будет сказано ниже).

Светодиоды HL1, HL2 позволяют визуально контролировать направление вращения вала электродвигателя.

В стабилизаторе напряжения можно применить детали следующих типов. В качестве компараторов могут работать также и

микросхемы типов К521САЗ, К521СА5, К521СА6. Последний тип микросхемы содержит два компаратора в одном корпусе. Оптроны U1 и U2 могут быть любыми из серии АОУ103, кроме АОУ103А, а также АОУ115Б (В). Диодные мосты могут быть, кроме указанных на схеме, типов КЦ402, КЦ405 с буквами А-В, Ж, И. Стабилитрон VD2 желательно использовать с малым значением температурного коэффициента напряжения, например, Д818 с любыми буквами.


Но если к температурной стабильности регулируемого напряжения не предъявляются высокие требования, то возможно использование стабилитронов других типов с напряжением стабилизации б... 10 В, например, КС168А, КС175А, КС191А, Д814А (Б, В).

Конденсаторы С1,.С2 - оксидные К50-16, К50-6 или К50-29: СЗ -КМ-6, К 10-17; С4 - К73-17. Все постоянные резисторы - типов МЛТ, С2-23, С1-12; подстроенные R2 и R4 - СП5-2, СПЗ-19, СПЗ-38. Конечные выключатели SF1, SF2 и кнопки SB1, SB2 - КМ 1-1, КМ2-1;

переключатели SA1, SA2 - тумблеры ТЗ, П2Т-1-1, МТЗ.

Электродвигатель М 1 - типа РД-09 с редуктором, число оборотов выходного вала - 5...20 об/мин (коэффициент редукции 60...240). Такие двигатели применяются в самопишущих потенциометрах. В качестве трансформатора Т2 может быть использован ТПП238-127/220-50 или любой другой мощностью не менее 10 Вт, имеющий отвод в первичной обмотке на 127 В, вторичную обмотку на напряжение 18...22 В и ток не менее 100 мА.

Для преобразования вращательного движения вала электродвигателя в поступательное движение ползунков трансформатора Т1 использована винтовая пара с резьбой М12х 1,75. С ее винтом вал двигателя соединен через переходную втулку. При частоте вращения вала 15 об/мин выходное напряжение изменяется со скоростью около 0,5 В/с.

Настройка устройства заключается в установке величины номинального выходного напряжения резистором R2 и в установке точности регулирования напряжения резистором R4. В авторском экземпляре стабилизатора при номинальном напряжении 220 В точность регулирования составляла ±3%. Теоретически стабилизатор способен обеспечить точность регулирования в пределах десятых долей процента - для этого надо лишь увеличить емкость конденсатора С1. Но тогда он будет реагировать и на незначительные колебания сетевого напряжения, вызванные случайными причинами (например, подключением и отключением электроприборов); это может привести к преждевременному износу механических подвижных частей устройства.

В процессе настройки следует выбрать такое положение контактов переключателя SA2, чтобы при отклонении напряжения на



нагрузке от нормы вал двигателя вращался в направлении, обеспечивающем стабилизацию этого напряжения.

Данный стабилизатор был изготовлен для поддержания номинального напряжения 220 В в дачном домике в условиях значительного снижения напряжения питающей сети. При максимальной нагрузке (4,4 кВт) минимальное входное напряжение, при котором стабилизатор выполнял свою функцию, составляло около 180 В. При дальнейшем понижении напряжения сети срабатывал концевой выключатель, и режим стабилизации прекращался, поскольку ползунки находились в крайнем нижнем (по схеме) положении. Чтобы избежать такой ситуации, можно рекомендовать поменять местами выводы обмоток трансформатора А2АЗ и В2ВЗ и одновременно изменить положение контактов переключателя SA2. При этом сетевое напряжение будет подаваться на скользящие контакты В2ВЗ, а нагрузка будет подключена к выводам обмоток А2АЗ. Теперь стабилизация будет обеспечиваться при сколь угодно глубоком понижении напряжения сети (даже до 50...60 В), однако следует помнить, что поскольку в любом случае ток через отводы В2ВЗ не может превышать 20 А, максимальный выходной ток должен быть во столько раз меньше этого значения, во сколько раз выходное напряжение больше входного. Это следует из условия равенства мощностей входной и выходной цепей.

Но такой способ включения частей обмотки имеет недостаток:

при резком увеличении входного напряжения к электросети через ползунки В2ВЗ окажется подключенным несоразмерно малое число витков обмотки трансформатора, и пока система автоматического регулирования будет отрабатывать входное воздействие, через контакты В2ВЗ будет протекать чрезмерно большой ток, а на нагрузке будет действовать недопустимо большое напряжение. Для частичного предотвращения этого недостатка можно ограничить перемещение ползунков автотрансформатора соответствующей установкой концевого выключателя, который бы срабатывал при снижении входного напряжения до 150... 160 В, и дальнейшее перемещение ползунков в сторону уменьшения числа витков обмоток, подключаемых к сети, прекращалось.



Устройство пригодно для стабилизации выходного напряжения в диапазоне от единиц вольт до 220 В. Для обеспечения выходного напряжения меньше 70...80 В первичную обмотку трансформатора Т2 следует питать непосредственно от сети 220 В и, кроме того, уменьшить величину резистора R1 до 47... 56 кОм. Для выходного напряжения менее 10 В стабилитрон VD2 придется заменить другим, напряжение стабилизации которого должно быть на 1...2 В меньше. чем стабилизируемое. В качестве трансформатора Т1 можно также использовать тороидальные автотрансформаторы типов ЛАТР-2, ЛАТР-9, однако в этом случае допустимая мощность нагрузки уменьшится; придется также применить двигатель РД-09 с меньшим числом оборотов (1...2 об/мин) и подобрать соответствующее положение контактов переключателя SA2.

Данное устройство удобно использовать в школе на уроках физики, а также в радиокружке при настройке устройств.

Для обеспечения надежной звукоизоляции следует автотрансформатор установить на жестком основании через войлочные или резиновые прокладки, которые обладают, хорошими звукопоглощающими свойствами.



Сторожевые устройства


Для защиты дачного участка от непрошенных гостей, для ограждения опасных объектов можно использовать сторожевое устройство.

Схема такого устройства (первый вариант) показана на рис. 35. Объект, нуждающийся в охране, окружают по периметру медным обмоточным проводом диаметром 0,1...0,3 мм. Этот охранный шлейф может быть прикреплен к забору или к вбитым в землю колышкам. Концы шлейфа подключают к электронному автомату через гнезда XS1. Пока шлейф не поврежден, через его небольшое сопротивление база транзистора VT1 соединена с эмиттером. В это время транзистор и тринистор VS1 закрыты, потребляемый устройством ток (около 100 мкА) определяется в основном сопротивлением резистора R1 и начальным током коллектора транзистора. При обрыве шлейфа на базу транзистора через резистор R1 подается отрицательное напряжение смещения, которое открывает транзистор. Через открывшийся транзистор и резистор R3 поступает положительное напряжение на управляющий электрод тринистора VS1.

Тринистор при этом открывается, срабатывает электромагнитное реле К1 и своими контактами (на схеме не показаны) включает звуковой сигнализатор, например электрический звонок. После устранения обрыва провода автомат устанавливают в исходное состояние (дежурный режим) кратковременным выключением питания (SA1).


В устройстве можно применить транзистор из серий КТ203 КТ361, КТ502 со статическим коэффициентом передачи тока не менее 50. Тринистор может быть любым из серии КУ101. Электромагнитное реле К1 - типа РЭС-10 (паспорт РС4.524.304); батарея питания - 3336Л.

Налаживание устройства сводится к подбору резистора R1. Его сопротивление должно быть таким, чтобы при отключении шлейфа транзистор VT1 полностью открывался (напряжение между эмиттером и коллектором не более 0,5 В) и срабатывало реле, а при подключенным шлейфе транзистор был бы надежно закрыт. Сопротивление резистора зависит от статического коэффициента передачи тока используемого транзистора и сопротивления провода шлейфа: чем они больше, тем больше может быть сопротивление резистора R1 и, следовательно, выше экономичность устройства.


На рис. 36, а приведена схема второго варианта сторожевого устройства, которое обладает еще большей экономичностью: потре



бляемый в дежурном режиме ток не превышает 10 мкА, т. е. срок службы батареи питания определяется в основном ее саморазрядом. Это оказалось возможным благодаря применению высокоэкономичной микросхемы серии К176.

Работа этого сторожевого устройства, как и предыдущего. основана на выдаче тревожного сигнала при обрыве провода. которым окружают охраняемый объект. Этот охранный шлейф через двухконтактное гнездо XS1 включен между общим проводом питания и одним из входов логического элемента DD1.1. Вместе с логическим элементом DD1.2, резистором R2 и конденсатором С1 он образует генератор импульсов с частотой 2...3 Гц, а на элементах DD1.3, DD1.4, R3 и С2 собран генератор импульсов звуковой частоты (около 800 Гц). Транзистор VT1 выполняет роль усилителя мощности.

Пока шлейф не поврежден, генераторы не работают, так как на выводе 1 микросхемы присутствует напряжение низкого уровня. При обрыве охранного шлейфа начинают работать оба генератора и в телефоне НА1 слышны прерывистые звуковые сигналы. В этом режиме устройство потребляет от батареи ток около 5 мА.

Транзистор VT1 может быть любым из серий КТ312, КТ315. КТ3117, КТ503; конденсаторы С1, С2 - типа КМ-6 или К10-23;

резисторы - МЛТ-0,25. В качестве звукового излучателя применен микрофонный капсюль ДЭМШ-1А с сопротивлением обмотки постоянному току 180 Ом. Можно использовать и другие звуковые излучатели, имеющие достаточную громкость и сопротивление не менее 100 Ом. Выключатель питания SA1 - типа "тумблер" (ТП1-2. МТ1-1 и др.). Батарея GB1 - "Крона-ВЦ" или "Корунд".

Все детали сторожевого устройства, кроме выключателя SA1 и звукового излучателя НА1, смонтированы на печатной плате из фольгированного стеклотекстолита (рис. Зб,б,в). Батарея GB1 укреплена с помощью хомутика из жести. Плату можно поместить в любой корпус, например в пластмассовую мыльницу.

Если устройство собрано из исправных деталей и в монтаже нет ошибок, то оно начнет работать сразу.


Однако может оказаться, что при обрыве провода звуковой сигнал не подается. Это может быть в том случае, если длина провода шлейфа велика и он плохо изолирован от различных токопроводящих предметов (влажного дерева, земли и пр.). При этом следует уменьшить сопротивление резистора R1; однако необходимо помнить, что чем меньше сопротивление этого резистора, тем хуже экономичность устройства.

Рассмотренные выше сторожевые устройства удобно применять для охраны объектов, где нет постоянного движения, приводящего к периодическому замыканию и размыканию защитных контактов.

Именно это имеет место в квартирах. Поэтому для охраны квартир и других аналогичных объектов с периодическим открыванием и закрыванием двери специально было разработано устройство охранной сигнализации, схема которого представлена на рис. 37 (третий вариант). Рассмотрим работу такого устройства.

Контакты охранного датчика обозначены на схеме SA1. При закрытой двери эти контакты замкнуты, при открытой - разомкнуты. Выключатель SA2 определяет режим работы устройства: "Блокировка" или "Охрана". В режиме "Блокировка", когда контакты выключателя SA2 замкнуты, тревожный сигнал устройства не зазвучит независимо от положения контактов датчика SA1. В этом режиме устройство находится, когда хозяева в квартире, и приходится часто открывать дверь (хотя на ночь устройство можно переключать в режим охраны).

Допустим, что на элементы устройства подано питание, контакты датчика SA1 и выключателя SA2 находятся в показанном на схеме положении. На выводе 11 микросхемы DD1, который является выходом RS-триггера, выполненного на логических элементах DD1.2, DD1.3, в этом случае действует напряжение низкого уровня. На логических элементах DD2.3, DD2.4 собран генератор частотой около 1 Гц для формирования прерывистого тревожного сигнала, а на логических элементах микросхемы DD3 - генератор звукового сигнала. Оба генератора заторможены, поскольку на выходе логического элемента DD2.2 - напряжение низкого уровня.



Если в таком режиме ( режиме блокировки) разомкнуть контакты датчика SA1, то состояние RS-триггера не изменится, так как на выводе 2 логического элемента DD1.1 действует по-прежнему напряжение низкого уровня.

При уходе из помещения контакты выключателя SA2 размыкают-устройство переводится, в режим охраны. При этом начинается




зарядка конденсатора С1 через резистор R2. Пока конденсатор не зарядится до напряжения, равного напряжению переключения логического элемента DD1.1 по выводу 2, - можно открывать дверь, размыкая контакты датчика SA1 - RS-триггер не изменит своего состояния. Длительность задержки выбрана равной 15...20 с -за это время нужно выйти из помещения и закрыть дверь, возвратив контакты датчика SA1 в исходное состояние. Когда конденсатор С1 зарядится до нужного напряжения, устройство перейдет в режим охраны. Если теперь открыть дверь, то размыкание контактов датчика SA1 вызовет появление на выводе 1 логического элемента DD1.1 напряжения высокого уровня. Поскольку на выводе 2 этого элемента также напряжение высокого уровня, на выходе элемента DD1.1 появится напряжение низкого уровня, что приведет к переключению RS-триггера в противоположное состояние, соответствующее напряжению высокого уровня на выводе 11 логического элемента DD1.2. Возврат контактов датчика в. исходное положение не изменит состояния RS-триггера. Если в помещение вошел хозяин, то он возвратит RS-триггер в исходное положение изменением положения контактов SA2, т.е. их замыканием. Если же в помещение проник человек, не знающий о наличии охранной сигнализации, то он только закроет дверь.

Напряжение высокого уровня с вывода 11 элемента DD1.2 через резистор R3 будет заряжать конденсатор С2. Через некоторое время напряжение на конденсаторе С2 достигнет такого значения, которое логический элемент DD2.1 будет воспринимать как напряжение высокого уровня (по выводу 1). Поскольку на выводе 2 этого элемента тоже имеется напряжение высокого уровня, на выходе логического элемента DD2.1 появится напряжение низкого уровня, а



на выходе элемента DD2.2 - высокого уровня. Заработают оба генератора, и звуковой излучатель НА1 будет выдавать тревожный прерывистый сигнал. Этот сигнал будет звучать до тех пор, пока не замкнут контакты SA2 (но непрошеный о них не знает), либо до полного разряда батареи GB1.

Временная задержка, обеспечиваемая цепью R3C2, необходима для того, чтобы при входе хозяина в квартиру он,успел включить режим блокировки и исключил тем самым возникновение тревожного сигнала.

Для получения максимально возможной мощности в излучателе НА1 при заданном его сопротивлении и при заданном напряжении батареи GB1 использован мостовой усилитель, выполненный на транзисторах VT1-VT4. Частота звукового сигнала, определяемая резисторами R8, R9 и конденсаторами С5, С6, выбрана равной примерно 2...3 кГц для обеспечения наилучшей слышимости.

Светодиод HL1 необходим для визуального контроля напряжения питающей батареи GB1. При нажатии кнопки SB1 параллельно батарее подключается нагрузочный резистор R11. Если под нагрузкой напряжение батареи меньше 5,4...5,6 В, то стабилитрон VD3 не входит в режим стабилизации и светодиод не загорается. Контроль батареи следует проводить каждые 3-4 дня.

О деталях устройства. Микросхемы серии К561 можно попробовать заменить микросхемами серии К176 - как правило, они работают при напряжении 6 В. Конденсаторы Cl, C2 - типа К73-17 либо оксидные К53-1, К53-4. Основное требование к ним-малый ток утечки. Конденсаторы СЗ, С5, С6-типов КМ-6, К10-7В, К73-17, С4 -К50-6, К50-16, К50-12, К50-24. Транзисторы VT1-VT4 могут быть типов КТ814, КТ815 либо соответственно КТ816, КТ817 с любыми буквами. Коэффициент передачи тока их должен быть не менее 60...70. Диоды VD1, VD2 - типов КД521, КД522, КД509, КД510, КД102 с любыми буквами. Датчик SA1 - любой нормально замкнутый контакт, например от реле РСМ, РКН или на основе геркона и магнита, например СМК-1. Выключатель SA2 - типа П2К, МТ1 (с фиксацией). Кнопка SB1 - типа П2К (без фиксации), КМ1-1. Излучатель НА1 кроме указанного на схеме может быть типа 2ГД36, 4ГД8Е, а также любой другой с сопротивлением катушки 4... 12 Ом и с возможно большим звуковым давлением.В качестве батареи GB1 использованы четыре гальванических элемента 316, соединенные последовательно. Ток, потребляемый устройством в режиме ожидания, не превышает 20 мкА, поэтому одного комплекта источника питания хватает на один год непрерывной работы.

Большая часть элементов смонтирована на печатной плате и заключена в подходящий корпус. Динамическая головка НА1 должна

быть расположена на лестничной клетке и закрыта металлическим щитом с отверстиями, так чтобы доступ к ней был затруднен. Корпус устройства следует располагать в потайном месте. Проводку к излучателю НА1 также нужно выполнить скрытно, чтобы исключить возможность ее повреждения.


Тринисторные регуляторы мощности


Предположим, у вас есть электроплитка, а мощность ее не регулируется. Вот и горит спираль в полный накал тогда, когда


достаточно и четверти номинальной мощности, бессмысленно расходуя драгоценные киловатт-часы. Выход есть - сделать к электроплитке регулятор мощности. Схема первого варианта регулятора представлена на рис. 68. Он позволяет регулировать мощность в нагрузке, рассчитанной на включение в сеть напряжением 220 В, от 5...10 до 97...99% номинальной мощности. Коэффициент полезного действия регулятора не менее 98%.

Регулирующие элементы устройства - тринисторы VS1 и VS2 -включены последовательно с нагрузкой. Изменение мощности, потребляемой нагрузкой, достигается изменением угла открывания тринисторов.

Узел, обеспечивающий изменение угла открывания тринисторов, выполнен на однопереходном транзисторе VT1. Конденсатор С1, соединенный с эмиттером транзистора, заряжается через резисторы R2 и R3. Как только напряжение на обкладках конденсатора достигнет определенного значения, однопереходный транзистор откроется, через обмотку I трансформатора Т1 пройдет короткий импульс тока. Импульсы с обмотки II или III трансформатора откроют тринистор VS1 или VS2 - в зависимости от фазы сетевого напряжения, и с этого момента до конца полупериода через нагрузку будет протекать ток. Изменяя сопротивление резистора R3, можно регулировать скорость зарядки конденсатора С1 и, следовательно, угол открывания тринисторов и среднюю мощность в нагрузке.

Узел регулирования угла открывания тринисторов питается от двухполупериодного выпрямителя, выполненного по мостовой схеме (VD1). Напряжение на однопереходном транзисторе ограничено стабилитронами VD2, VD3. Конденсатор фильтра здесь отсутствует - в нем нет необходимости.

Однопереходный транзистор КТ117 можно применять с буквами А и Б. Можно использовать также аналог однопереходного транзистора, выполненный на двух биполярных транзисторах разной структуры (см. рис. 50). Мостовой выпрямитель VD1 может быть типов КЦ402, КЦ405 с любыми буквами.
Можно также применить четыре диода типов Д226, Д310, Д311, Д7 с любыми буквами, включив их по схеме выпрямительного моста. При замене тринисторов VS1, VS2 на другие типы следует помнить, что они должны быть рассчитаны на подачу как прямого, так и обратного напряжения не менее 400 В. Трансформатор Т1 - типа МИТ-4 или МИТ-10. Самодельный трансформатор можно выполнить на ферритовом кольцевом магнитопроводе М2000НМ, типоразмер К20х10хб. Все обмотки выполнены проводом ПЭВ-1 0,31 и содержат по 40 витков. Намотка ведется одновременно в три провода, причем витки равномерно распределяются по телу кольца магнитопровода. Одноименные выводы обмоток на схеме обозначены точками.

Тринисторы VS1 и VS2 устанавливают на радиаторы с поверхностью охлаждения не менее 200 см^2 каждый. При этом максимальная мощность нагрузки может составлять 2 кВт.

Настройка регулятора мощности заключается в подборе сопротивления резистора R2 по максимальной мощности в нагрузке. Резистор R3 при этом временно замыкают проволочной перемычкой. Момент отдачи в нагрузку максимальной мощности лучше всего контролировать по осциллографу. В случае применения самодельного трансформатора Т1 следует подобрать нужную полярность подключения выводов обмоток, которая должна соответствовать обозначенной на схеме.

Регулятор мощности можно использовать также совместно с маломощными электропечами, лампами накаливания и другими активными нагрузками. Описанному тринисторному регулятору мощности присущи недостатки. Во-первых, с изменением температуры в корпусе регулятора (а она будет в процессе работы увеличиваться из-за нагрева тиристоров) будет изменяться емкость конденсатора С1. Это приведет к изменению угла открывания тринисторов, а также к изменению мощности в нагрузке. Чтобы в какой-то степени устранить этот недостаток, необходимо применять конденсатор С1 с небольшими значениями ТКЕ (температурного коэффициента емкости), например К73-17, К73-24.

Во-вторых, тринисторный стабилизатор наводит высокий уровень помех в питающей сети.


Эти помехи возникают в моменты скачкообразного включения тринистора. Коммутационные помехи не только распространяются через сеть, вызывая неустойчивую работу различных приборов (электронных часов, вычислительных машин и пр.), но и мешают нормальной работе некоторых устройств, гальванически не связанных с сетью (так, в радиоприемнике, находящемся недалеко от тринисторных регуляторов, слышен треск помех). Поэтому уменьшение коммутационных помех в тринисторных регуляторах мощности является важной задачей.:

Наиболее доступным способом снижения помех является такой способ регулирования, при котором переключение тринистора происходит в моменты перехода сетевого напряжения через нуль. При этом мощность в нагрузке можно регулировать числом полных полупериодов, в течение которых через нагрузку протекает ток. Недостатком такого способа регулирования по сравнению с традиционными являются большие колебания мгновенных значений мощности в нагрузке в течение периода регулирования, который значительно больше периода синусоидального напряжения и может достигать нескольких секунд. Однако для таких инерционных потребителей энергии, как электрическая печь, утюг, электроплитка, мощный электромотор, этот недостаток не является определяющим.

На рис. 69 представлена схема регулятора.

Работой тринисторного ключа VS1, подающего питание к нагрузке, управляет счетчик К155ИЕ8 (DD2), представляющий собой делитель частоты с переменным коэффициентом деления. Подачей сигналов 1 или 0 на входы VI, V2, V4, V8, VI 6 и V32 счетчика формируют соответствующую импульсную последовательность на выходе S1. Полный период работы счетчика состоит из 64



импульсов. Если, например, на эти входы подать уровни 1, 0, 0, 1, 1, 0, для чего надо разомкнуть соответственно контакты выключателей SA6, SA3, SA2, то на выходе S1 счетчика сформируется 25 импульсов за цикл (1+8+16=25). Число импульсов определяет мощность, выделяемую в нагрузке регулятора. Требуемый режим работы счетчика обеспечен сигналами логического 0 на входах V0, R, C1 и С2.



Тактовые импульсы частотой 100 Гц, управляющие работой счетчика, формируют логические элементы DD1.2 и DD1.3 из пульсирующего напряжения, снимаемого с выхода выпрямительного моста VD5-VD8. Электронный ключ образован составным транзистором VT2VT3, тринистором VS1 и диодным мостом VD9-VD12. Когда на выходе S1 счетчика имеется уровень логического 0, составной транзистор закрыт, тринистор в это время открыт током через резистор R 13, и через нагрузку, подключенную к соединителю XS1, протекает ток. Тринистор включен в диагональ выпрямительного моста VD9-VD12, поэтому через нагрузку протекает переменный ток.

Временные диаграммы напряжения в различных точках регулятора мощности показаны на рис. 70.

Конденсатор СЗ необходим для обеспечения открывания тринистора VS1 точно в моменты перехода сетевого напряжения через нуль. Дело в том, что спад прямоугольных импульсов на выходе формирователя (диаграмма 2) не совпадает с моментом перехода сетевого напряжения через нуль (диаграмма 1).

Объясняется это тем, что напряжение переключения элементов DD1.2 DD1.3 больше нуля. Конденсатор СЗ обеспечивает задержку



включения тринистора на время tз и тем самым исключает преждевременное его включение.

Микросхемы и мощный ключ питает двухполупериодный выпрямитель на диодах VD1-VD4 со стабилизатором напряжения на транзисторе VT1. Функцию образцового стабилитрона выполняет логический элемент DD1.1.

Микросхему К155ЛАЗ можно заменить на К158ЛАЗ, КР531ЛАЗ, К555ЛАЗ; транзистор КТ801Б - на КТ603, КТ604, КТ807, КТ815 с любым буквенным индексом; транзисторы КТ315Б - на любые из серий КТ312, КТ315, КТ503. Диоды VD1-VD4 - любые на выпрямленный ток не менее 100 мА; VD5-VD8 - любые из серий Д9. Д220, Д223, Д226, Д311. Мощные диоды Д245А можно заменить на Д245, Д246, Д247, Д248 с любыми буквенными индексами. Оксидные конденсаторы - К50-6, К50-3, К50-12, резисторы - МЛТ, выключатели Ql, SA1-SA6 - тумблеры ТВ2-1, Т1, ТП1-2, П1Т, МТ и др.

Сетевой трансформатор Т1 выполнен на магнитопроводе ШЛ20х20.


Обмотка I содержит 2000 витков провода ПЭВ-2 0,11, обмотка II - 75 витков провода ПЭВ-2 0,25, обмотка III - 75 витков ПЭВ-2 0,15. Тринистор VS1 устанавливают на теплоотводе с эффективной площадью охлаждения не менее 200 см^2, диоды VD9-VD12 - на отдельных теплоотводах с поверхностью не менее 50 см^2 каждый, транзистор VT1 - на теплоотводе с поверхностью 10...20 см^2.

При налаживании сначала, отключив временно микросхему DD2, подборкой резистора R1 устанавливают на выходе стабилизатора напряжение, равное 5 В. Затем к соединителю XS1 подключают нагрузку и с помощью осциллографа проверяют форму напряжения в различных точках регулятора (она должна соответствовать рис. 70) и подбирают конденсатор СЗ такой емкости, чтобы обеспечить требуемое время задержки. При отсутствии осциллографа этот конденсатор подбирают по минимальному уровню помех в малогабаритном радиовещательном приемнике, размещенном возле проводов цепи нагрузки. Максимальная мощность нагрузки 2 кВт.

В данном устройстве мощность регулируют выключателями SA1-SA6. Если же вместо них установить бесконтактные ключи, например транзисторные, тогда для управления мощностью можно применять цифровые сигналы ЭВМ. Это позволяет использовать регулятор в различных системах автоматического управления технологическими процессами.

Схема возможного варианта управляющей части регулятора с использованием двоично-десятичного счетчика К155ИЕ2 и дешифратора-демультиплексора К155ИДЗ представлена на рис. 71. Работает этот узел следующим образом. При подаче импульсов частотой

100 Гц на вход С1 счетчика DD1 на выходах дешифратора DD2 последовательно появляется сигнал логического 0. При таком же сигнале на выходе 0 дешифратора RS-триггер, собранный на логических элементах DD3.1, DD3.2, установится в состояние, соответствующее прохождению тока через нагрузку. Через несколько полупериодов сигнал логического 0 появится на одном из выходов дешифратора. Этот сигнал через подвижный контакт галетного переключателя SA1 будет подан на второй вход RS-триггера (вывод 1 элемента DD3.1), переключит его в другое состояние, отчего ток через нагрузку прекратится.



Чем ниже ( по схеме) находится подвижный контакт переключателя SA1, тем большая средняя мощность будет выделяться на нагрузке. При крайнем нижнем положении подвижного контакта переключателя RS-триггер переключаться не будет, и нагрузка окажется включенной постоянно. При крайнем верхнем положении этого контакта триггер также не переключится, но в этом случае его состояние будет противоположным предыдущему, и нагрузка окажется выключенной. Таким образом, мощность в нагрузке можно регулировать ступенчато через 10% ее максимального значения.

Счетчик К155ИЕ2 можно заменить на К155ИЕ5, тогда период работы регулятора будет состоять не из 10, а из 16 тактовых импульсов, что позволит регулировать мощность более плавно. При этом не обязательно использовать переключатель SA1 на 17 положений - в области максимальных значений мощности можно использовать не все выходы дешифратора, а, скажем, через один.



На рис. 72 представлена еще одна схема регулятора мощности с малым уровнем помех (первый вариант). Основные отличия от описанного выше регулятора состоят в следующем. Во-первых, регулирование мощности осуществляется с помощью переменного резистора. Во-вторых, регулирование мощности выполняется менее плавно, чем в предыдущем устройстве. В-третьих, данное устройство

проще.

Работает регулятор следующим образом. Импульсы выпрямленного напряжения сети с мостового выпрямителя VD6 через делитель R1R3 поступают на вход формирователя, выполненного на логических элементах-инверторах DD1.4, DD1.5 и резисторах R2, R5. Формирователь работает так же, как триггер Шмитта (см. рис. 52), поэтому на выходе элемента DD1.6 присутствуют прямоугольные импульсы частотой 100 Гц (рис. 73, эпюра 2). Импульсы формируются при приближении сетевого напряжения к нулю.

На логических элементах DD1.1-DD1.3 выполнен генератор прямоугольных импульсов частотой около 10 Гц. Скважность импульсов регулируется переменным резистором R4 (рис. 73, эпюра 3).

Импульсы формирователя и генератора суммируются через диоды VD3, VD4 на базе транзистора VT1.


Транзистор VT1 открывается в том случае, когда на выходах логических элементов DD1.3 и DD1.6 имеется напряжение высокого уровня. Таким образом, транзистор VT1, а следовательно, и тринистор VS1 открыты в течение полупериодов сетевого напряжения, соответствующих наличию напряжения высокого уровня на выходе логического элемента DD1.3. Изменяя скважность импульсов генератора, можно управлять соотношением числа полупериодов открытого и



закрытого состояний тринистора VS1, т. е. средней мощностью в нагрузке (см. рис. 73).

Если частота генератора 10 Гц, то число ступеней (уровней) регулирования мощности составляет 100:10 = 10. Мощность в нагрузке пульсирует с частотой 10 Гц, поэтому лампу накаливания нельзя использовать в качестве нагрузки (пульсации яркости будут заметны глазу). Если, допустим, увеличить частоту генератора до 20 Гц, то число ступеней регулирования уменьшится до 5, но зато возрастет частота пульсации мощности в нагрузке.

Микросхемы питаются от параметрического стабилизатора R7VD5, пульсации сглаживаются конденсатором С2.

Микросхему К561ЛН2 можно заменить микросхемой К561ЛН1 или двумя микросхемами К561ЛА7, а также соответствующими аналогами из серии К176.

Максимальная мощность нагрузки составляет 200 Вт. Если ее необходимо увеличить, следует использовать тринистор VS1, выпрямительный мост VD6 и предохранитель FU1 на больший рабочий ток. Однако при этом на диодах моста будет выделяться значительная тепловая мощность. Целесообразнее было бы в качестве регулирующего элемента использовать симистор (тогда не понадобится силовой выпрямительный мост), однако для управления симистором придется кардинально переделать схему формирования управляющих импульсов и применить для питания трансформатор, что усложнит устройство. Поэтому было решено использовать тринистор, встречно-параллельно которому включен диод. Схема такого регулятора показана на рис. 74 (второй вариант). Тринистор VS1 должен быть типа КУ202Н.



На логических элементах DD1.1, DD1.2 выполнен триггер Шмитта, а на логических элементах DD1.3-DD1.5 - генератор.


Поскольку управление тринистором VS1 необходимо осуществлять не в каждом полупериоде, а в каждом втором полупериоде» когда к электродам тринистора приложено прямое напряжение, на вход триггера Шмитта (правый по схеме вывод резистора R1) поступают импульсы с частотой 50 Гц, на выходе триггера при этом имеется меандр. На элементах СЗ, R4, R5 выполнена дифференцирующая цепь, благодаря которой на вход элемента DD1.6 поступают короткие (15...20 мкс) импульсы, соответствующие началу каждого второго полупериода. Кроме того, на вход элемента DD1.6 через диод VD3 поступают импульсы с выхода генератора. На выходе элемента DD1.6 имеются короткие отрицательные импульсы, которые открывают транзистор VT1 и подают ток на управляющий

электрод тринистора.

Следует сказать, что в предыдущей схеме регулятора (рис. 72) не было необходимости применять дифференцирующую цепь на выходе триггера Шмитта, поскольку триггер формировал короткие импульсы при достижении сетевым напряжением нуля.

Источник питания микросхемы и цепи управления тринистором выполнен по однополупериодной схеме на элементах RIO, VD4, VD5. Благодаря большой скважности импульсов тока, протекающих через управляющий электрод тринистора (скважность равна 50...70), и наличию накопительного конденсатора С1 удалось обеспечить амплитуду импульсов тока через управляющий электрод около 100 мА при среднем токе через резистор R10 около 3 мА.

Выключатель Q1 позволяет выбирать пределы регулирования мощности в нагрузке: при разомкнутых контактах мощность регулируется от нуля до 50%, при замкнутых - от 50 до 100%.

Тринистор VS1 может быть также типа Т112-10. Диод VD6 -КД202 с буквами К, М, Р; Д232 (А, Б), Д233 (А, Б), Д246 (А, Б), Д247 (А, Б). Резистор R10 - МЛТ-1 или МЛТ-2.

Выключатель Q1 - тумблеры типов ТВ1, Т1-ТЗ. Остальные типы деталей - те же, что и в предыдущем варианте.

Тринистор VS1 и диод VD6 установлены на едином радиаторе с поверхностью охлаждения около 300 см^2. Электрическая изоляция их корпусов не требуется, поскольку у тринистора с корпусом соединен анод, а у диода - катод, которые в устройстве электрически

соединены.

Мощность нагрузки определяется допустимым прямым током тринистора и диода VD6 и для указанных на схеме типов составляет 2 кВт. Для увеличения мощности до 4 кВт следует применить диод

VD6 с прямым током 10 А, а также увеличить вдвое площадь радиатора, использовать предохранитель FU1 на ток 20 А.


Устройство для автоматической зарядки и разрядки автомобильных аккумуляторов


В процессе длительного (несколько месяцев) хранения автомобильных аккумуляторных батарей происходит их саморазряд, в связи с чем рекомендуется не реже одного раза в месяц производить подзарядку аккумуляторов. Однако обычная подзарядка не в состоянии предотвратить сульфатацию пластин, приводящую к уменьшению емкости аккумулятора и снижению срока его службы. Для того чтобы исключить эти нежелательные явления, рекомендуется время от времени производить тренировку аккумулятора:

разрядку его током, в амперах численно равным 1/20 номинальной емкости, выраженной в ампер-часах, до напряжения 10,5 В, и последующую зарядку до напряжения 14,2...14,5 В. Такой зарядно-разрядный цикл можно повторять неоднократно, если батарея сильно засульфатирована или длительное время находилась в полуразряженном состоянии.

Описываемое ниже зарядно-разрядное устройство предназначено для работы совместно с зарядным устройством, обеспечивающим необходимый зарядный ток. Устройство позволяет:

производить разрядку аккумулятора до напряжения 10,5 В;

автоматически начинать зарядку по окончании разрядки;

вести зарядку асимметричным током при соотношении зарядной и разрядной составляющих равном 10;

прекратить зарядку аккумулятора при достижении напряжением на зажимах аккумулятора значения 14,2...14,5 В, что соответствует сообщению аккумулятору его полной номинальной емкости;

контроль напряжения происходит в момент, когда зарядный ток через аккумулятор не протекает;

прекратить разрядку аккумулятора при пропадании сетевого напряжения;

производить циклы разрядки-зарядки однократно или многократно.

Рассмотрим работу устройства по его принципиальной схеме, приведенной на рис. 84.

Зарядно-разрядное устройство состоит из собственно зарядного устройства (ЗУ), обозначенного на схеме прямоугольником, и электронного узла управления. Питание узла управления осуществляется от аккумуляторной батареи.

В качестве порогового элемента (компаратора), вырабатывающего сигнал при достижении напряжением на аккумуляторе значения свыше 14,2...14,5 В и при снижении до 10,5 В, используется интегральный таймер КР1006ВИ1 (микросхема DA1).
Напомним кратко, как работает эта микросхема. Таймер содержит два основных входа: вход запуска (вывод 2) и пороговый вход (вывод 6). На этих входах происходит сравнение внешних напряжений с эталонными значениями, составляющими для указанных входов соответственно 1/3 Uпит и 2/3 Uпит, где Uпит - напряжение питания таймера, поданное на вывод 8 относительно общего вывода 1. Если на выводе 6 действует напряжение меньше 2/3 Uпит; то уменьшение напряжения на выводе 2 до значения, меньшего 1/3 Uпит приведет к установке таймера в состояние, когда на выходе Q (вывод 3) действует напряжение высокого уровня. При последующем повышении напряжений на входах соответственно больше 1/3 Uпит и 2/3 Uпит таймер переключится в другое устойчивое состояние, которому соответствует напряжение низкого уровня на выходе таймера.

Вывод 5 таймера служит для контроля значения образцового напряжения, а также для возможного изменения его значения с помощью внешних элементов. В данном случае образцовое напряжение стабилизировано стабилитроном VD3. Это сделано для повышения устойчивости работы компаратора при отслеживании медленно изменяющихся напряжений. Этой же цели служит и стабилизация напряжения питания таймера параметрическим стабилизатором VD2R8. Нижний и верхний пороги срабатывания компаратора можно изменять подстроечными резисторами R10 и R9.

Допустим, что аккумуляторная батарея и ЗУ подключены к устройству и в сети присутствует напряжение 220 В. Напряжение не слишком сильно разряженного 12-вольтового аккумулятора обычно составляет 12...12,6 В. При этом интегральный таймер установится в состояние, соответствующее напряжению высокого уровня на его выходе, и транзистор VT1 будет открыт. Будет светиться светодиод HL1, индицирующий режим заряда. Однако, как правило, степень разряженности подключенного аккумулятора неизвестна, и перед началом зарядки его следует разрядить до напряжения 10,5 В. Для включения режима разрядки кратковременно нажимают кнопку SB1 "Пуск". При этом через контакты SB1.1 на вывод 6 таймера подается напряжение, переключающее его в противоположное состояние, и светодиод HL1 гаснет.


Одновременно контакты SB1.2 подают на RS-триггер DD1.1DD1.2 сигнал, устанавливающий его в состояние напряжения высокого уровня на выходе логического элемента DD 1.1

При показанном на схеме положении контактов переключателя SA1 на выходах логических элементов DD1.3, DD1.4, включенных инверторами, действует напряжение низкого уровня. Если транзистор оптопары U2 открыт, то через базу транзистора VT4, резистор R22, транзистор оптопары и выходы логических элементов DD1.3 и DD1.4 протекает ток, достаточный для насыщения составного транзистора VT4. При этом через лампу накаливания EL1, подключенную к зажимам ХТЗ, ХТ4, начинает протекать разрядный ток аккумулятора. Разрядный ток в данном случае составит около 2,5 А, что соответствует режиму 20-часового разряда аккумулятора 6СТ55. При разрядке аккумулятора иной емкости следует применять лампу EL1 другой мощности, выбранной с учетом указанных выше соображений.

В устройстве предусмотрено отключение цепи разрядки при пропадании сетевого напряжения. Для этой цели используется транзисторная оптопара U2. Напряжение сети через резистор R1 подается на диодный мост VD1, выпрямляется им и подается на последовательно соединенные светодиоды оптопар U1 и U2. Конденсатор С1 и резистор R2 образуют фильтр, который сглаживает пульсации тока, протекающего через светодиод оптопары U2. Пока в сети имеется напряжение, через светодиод оптопары U2 протекает ток, фототранзистор открыт и выходной ток логических элементов DD1.3 и DD1.4 протекает через базу транзистора VT4. открывая последний. Идет разрядка аккумулятора на лампу EL1. При пропадании сетевого напряжения фототранзистор оптопары закрывается, это приводит к закрыванию транзистора VT4 и прекращению разрядки аккумулятора.

По мере разрядки аккумулятора напряжение на его зажимах уменьшается. Когда оно достигнет 10,5 В, интегральный таймер DA1 переключится в противоположное предыдущему состояние, которому соответствует напряжение высокого уровня на выходе Q. При этом откроются транзисторы VT1 и VT2.


Открывание транзистора VT1 вызовет подачу напряжения на светодиод оптопары U3. зажигание светодиода HL1 "Зарядка", переключение RS-триггера DD1.1DD1.2, а также открывание транзистора VT3. Переключение RS-триггера приведет к появлению напряжения высокого уровня на выходах логических элементов DD1.3, DD1.4. Светодиод HL2 погаснет, транзистор VT4 закроется и разрядка аккумулятора прекратится. Одновременно через открывшийся фототиристор оптопары U3 напряжение с выхода зарядного устройства ЗУ будет подано на выводы аккумуляторной батареи, и начнется ее зарядка.

Ток зарядки устанавливают в соответствии с инструкцией по эксплуатации аккумуляторной батареи, т.е. равным 1/10 или 1/20 емкости батареи. Если зарядка идет без контроля оператора, следует обеспечить ограничение колебаний зарядного тока при возможных колебаниях сетевого напряжения. Самый простой способ стабилизации тока - включение двух-трех параллельно соединенных автомобильных ламп мощностью 40... 50 Вт в разрыв одного из выходных проводов зарядного устройства. Такой же эффект может быть достигнут включением лампы напряжением 220 В и мощностью 200...300 Вт в разрыв одного из входных (сетевых) проводов ЗУ. Сопротивление вольфрамовой нити ламп накаливания возрастает с увеличением температуры, т.е. лампа обладает свойствами стабилизатора тока.

Зарядный ток содержит дозированную разрядную составляющую, что благотворно сказывается на протекании электрохимических процессов в батарее. Разрядная составляющая тока протекает через резистор R 19 и транзистор VT3 и равна примерно 0,5 А.

В процессе зарядки напряжение на полюсных выводах аккумулятора плавно увеличивается. Известно, что напряжение полностью заряженной батареи составляет 14,2...14,5 В. Измерение этого напряжения следует производить в отсутствие зарядного тока, поскольку импульсы зарядного тока в зависимости от степени разряженности аккумуляторной батареи увеличивают мгновенное значение напряжения на ее зажимах на 1...3- В по сравнению с режимом, когда ток зарядки не протекает.


Для обеспечения такого режима измерения в устройстве использованы элементы U1, R4, VT2. В режиме зарядки транзистор VT2 открыт. На рис. 85 показаны эпюры напряжений и токов, поясняющие работу оптопар U1 и U2.Напряжение сети (эпюра 1) выпрямляется диодным мостом



(эпюра 2) и подается на светодиоды оптронов U1 и U2. Фототранзистор оптрона U1 открывается в моменты, когда ток через светодиод этого оптрона (эпюра 3) превышает ток открывания фототранзистора. При этом резистор R4 шунтирует подстроенный резистор R9, и верхний порог срабатывания интегрального таймера DA1 значительно увеличивается. Фототранзистор открыт большую часть периода сетевого напряжения, и лишь в моменты перехода сетевого напряжения через нуль фототранзистор закрывается, и порог срабатывания таймера уменьшается до 14,2...14,5 В. Именно в это время через аккумулятор не протекает ток зарядки. Такое измерение производится в каждом полупериоде, т.е. 100 раз в секунду. Длительность измерения составляет 1...3 мс. Как только напряжение на аккумуляторе достигнет в отсутствие тока зарядки 14,2...14,5 В, таймер DA1 переключится в противоположное состояние, и зарядка прекратится. Однако разрядка не начнется, поскольку RS-триггер не изменит своего состояния. Закончился один цикл работы устройства. В таком состоянии устройство может находиться несколько суток, поскольку потребляемый им от аккумулятора ток достаточно мал (20...30 мА) и не может вызвать его существенной разрядки.

Если необходима многократная тренировка батареи разрядно-зарядными циклами, контакты переключателя SA1 переводят в нижнее по схеме положение. В этом случае RS-триггер не будет задействован, и режимы зарядки и разрядки будут чередоваться до тех пор, пока не будет выключено сетевое напряжение либо не будет отключен заряжаемый аккумулятор. Конденсаторы С2, СЗ повышают помехоустойчивость работы таймера. Резисторы R 18, R21 обеспечивают надежное удержание транзисторов VT3, VT4 закрытыми в отсутствие тока базы.

В устройстве вместо КТ608Б можно применять любые транзисторы из серий КТ603, КТ608, КТ3117, КТ815; вместо КТ503Б-КТ315, КТ501, КТ503, КТ3117 с любыми буквами; вместо КТ814Б -любой из серий КТ814, КТ816, КТ818, КТ837 и вместо КТ825Г -любой из этой серии.


Оптопары U1, U2 годятся любые из серий АОТ101, АОТ110, АОТ123, АОТ128, может лишь потребоваться уточнение сопротивления резисторов R3 и R23 по надежному открыванию фототранзисторов. В качестве оптопары U3 можно использовать оптронные тиристоры Т02-10, Т02-40, ТСО-10. Диодный мост VD1 может быть также типов КЦ402, КЦ405 с буквами А-В.

Стабилитрон VD2 желательно использовать с небольшим температурным коэффициентом напряжения, например, Д818 с другими буквами. Оксидный конденсатор С1 - К50-16, К50-35, К50-29; С2, СЗ -КМ-бб, К10-23, К73-17. Подстроечные резисторы R9, RIO - любые многооборотные, например, СП5-2. Резистор R19 - типа ПЭВ мощностью 10 или 15 Вт. Остальные - МЛТ, ОМЛТ, С2-23. Кнопка SB1, переключатель SA1 - любого типа, например, КМ2-1 и МТ1.

Зарядное устройство ЗУ, являющееся источником зарядного тока, обязательно должно иметь на выходе пульсирующее напряжение -это необходимо для нормальной работы узла на оптопаре U1.

Большая часть элементов устройства установлена на печатной плате. Оптопара U3 и транзистор VT4 установлены на радиаторах с поверхностью охлаждения 100... 150 см^2. Плата установлена в любом корпусе подходящих размеров (например, 260 х 100 х 70 мм). Соединения, по которым протекает ток зарядки и разрядки, должны быть выполнены проводами сечением не менее 2 мм^2. Провода, соединяющие устройство с аккумуляторной батареей, желательно выбрать гибкими.

Для налаживания устройства потребуются источник постоянного напряжения, регулируемого в пределах 9...15 В и током не менее 0,6 А, и вольтметр.

Зарядное устройство и лампу EL1 временно отключают от устройства, а вместо аккумулятора подключают источник постоянного напряжения. Установив по вольтметру напряжение 10,5 В, подстроечным резистором R 10 устанавливают нижний порог срабатывания компаратора, а затем, установив напряжение 14,2...14,5 В, подстроечным резистором R9 устанавливают верхний порог. О срабатывании компараторов таймера судят по зажиганию светодиодов HL1 и HL2.

Если имеется осциллограф, его вход подключают параллельно резистору R9, и при подключенном аккумуляторе и при поданном напряжении сети наблюдают кратковременное периодическое увеличение напряжения на выводе 6 микросхемы DA1, соответствующее моменту прохождения сетевого напряжения через нуль.При отсутствии осциллографа можно обойтись вольтметром, который также подключают к резистору R9. На нем замеряют напряжение, когда сетевое напряжение подано на мост VD1 через резистор R1, а затем напряжение сети отключают. Напряжение на резисторе R9 должно несколько увеличиться. В противном случае следует проверить исправность оптопары U1.

На этом настройку можно считать законченной.